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Abstract

This thesis addresses two significant aspects of contemporary physics: the generation of neutrino
mass and the study of dark matter. Despite being initially considered massless in the Standard
Model of particle physics, experimental evidence now confirms that neutrinos do possess mass.
In this work, we examine popular mechanisms explaining neutrino mass generation and present
a model that not only provides a mechanism to origin neutrino mass but also introduces dark
matter candidates. Following an introduction to Group Theory and the Standard Model, we
explore mechanisms for neutrino mass generation and review key concepts related to dark matter.
The scotogenic model is presented and serves as the foundation of our theoretical framework,
extending the Standard Model by elevating lepton number to a gauge symmetry. This additional
symmetry necessitates the introduction of extra particles, and we describe their interactions and
resulting phenomenology. The results of this thesis will be extended in a future publication. By
exploring the connections between neutrino masses and dark matter within models beyond the
Standard Model, we aim to deepen our understanding of fundamental particles and their role in

shaping the universe.
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Introduction



The Standard Model (SM) [1-3] is widely regarded as one of the most successful physical the-
ories due to its remarkable ability to explain a wide range of particle physics phenomena. It
encompasses the fundamental particles and the electromagnetic, strong, and weak interactions.
However, despite its accomplishments, the SM has certain limitations, particularly in the con-

text of massive neutrinos [4-6] and dark matter [7-9].

Neutrinos were first proposed by W. Pauli in 1930 to account for the continuous beta decay
emission spectrum [10, 11]. Pauli proposed that neutrinos possessed mass and were electrically
neutral, but subsequent work by E. Fermi [12], who popularized the term "neutrino,” and F.
Perrin [13] suggested that they were actually massless. In addition, in 1934 Bethe and Peierls
[14] showed that the cross-section between a neutrino and a proton should be extremely small
and theorized that neutrinos would never be observed. Within the framework of the Standard
Model, neutrinos are treated as massless entities. However, experimental evidence from neu-
trino oscillation experiments [15—17] indicates that neutrinos must have mass. This inconsistency
points to the incompleteness of the Standard Model and the need for new physics to elucidate
the origin and remarkably small magnitude of neutrino mass compared to other fermions in the
Standard Model.

Exploring various mechanisms to confer mass to neutrinos is crucial for advancing towards a
more comprehensive theory of particle physics, ensuring consistency with existing experimental
constraints [18]. Furthermore, understanding neutrino mass may reveal connections to other

unresolved questions in particle physics, such as the nature of dark matter [19].

Dark matter, constituting approximately 27% of the universe’s energy according to cosmo-
logical observations, is a form of matter that interacts weakly with Standard Model particles.
The Standard Model lacks a viable candidate for dark matter, explaining only about 4% of the
total energy content of the universe [20]. Consequently, the existence of a new type of matter,
likely in the form of a fundamental particle beyond the Standard Model, is required to account
for dark matter. Such particle candidates should be stable over cosmological time scales, given

that dark matter should have existed from the early universe until today.

An intriguing possibility is the existence of a common origin between neutrino mass and
dark matter. For instance, dark matter could potentially serve as the mediator for neutrino
mass generation [21-24], or the symmetry stabilizing dark matter might be intimately related

to neutrinos [25, 26]. Understanding the nature of both neutrinos and dark matter holds the



potential to illuminate unresolved issues at the interface of cosmology and particle physics.

In Chapter 2 of this thesis, we provide an overview of the theoretical foundations necessary
to comprehend the subsequent content. This includes an introduction to Group Theory, the
Standard Model of Particle Physics, and dark matter. Chapter 3 focuses on reviewing models
capable of explaining the generation of massive neutrinos, such as the seesaw mechanism and the
Scotogenic Model [27]. In Chapter 4, we present an extension to the Scotogenic Model, wherein
lepton number is gauged and then spontaneously broken by three units, leading to light Dirac
neutrino masses induced through a radiative mechanism and the appearance of dark matter

candidates.
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In this introductory chapter, we cover background topics relevant to the subsequent chapters.
The chapter is divided into three main sections.

In Section 2.1, we provide an introduction to group theory in the context of the Standard
Model. We begin with a series of definitions and fundamental facts in Section 2.1.1. Following
this, we focus on the relevant groups in the Standard Model, namely SU(2) and SU(3), and
discuss their properties in Sections 2.1.2 to 2.1.4.

Moving on to Section 2.2, we review the fundamentals of the Standard Model. First, we
present the particle content of the Standard Model in Section 2.2.1, detailing the various ele-
mentary particles and their properties. In Section 2.2.2, we delve into the interactions between
these particles, encompassing the electromagnetic, weak, and strong forces.

Sections 2.2.3 and 2.2.4 are dedicated to understanding the mechanism responsible for giving
mass to particles in the Standard Model. Here, we discuss the Higgs mechanism and sponta-
neous symmetry breaking, pivotal elements in generating masses for particles and breaking the
electroweak symmetry.

In Section 2.2.6, we introduce the Lorentz group, a fundamental concept in relativistic
physics. Section 2.3 is dedicated to dark matter, presenting the evidence for it and potential

candidates.

2.1 Introduction to group theory

2.1.1 Lie Groups and Algebras

In this section, we present key concepts of group theory without formal proof. The following
definitions and properties are drawn primarily from the books by Zee [28] and Keski-Vakkuri
[29], which serve as references for the remaining sections of this chapter.

Consider a set G = {a,b, ...} equipped with a binary composition law. We define a group as

the pair (G, ), or simply G, which satisfies the following conditions:
1. Closure: For all a,b € G, a-b € G.

2. Associativity: For all a,b,c € G,a-(b-¢c)=(a-b)-c.

w

. Identity: There exists an element e such that for alla € G, a-e=¢€-a = a.

1_ -1

4. Inverse: For all a € G, there exists an element a~! such that a-a~ a " -a=e.

An Abelian group is a group that satisfies the additional commutativity condition: for every
a, b€ G,a-b=>-a. If a # b, the group is called non-Abelian.

Now, we introduce some definitions that are useful in the context of group theory:
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e Order: The order of a group refers to the number of elements in the group, often denoted
as |G|.

e Subgroup: A group J is a subgroup of group G if every element in J is also in G, and the

order of J is a factor of the order of G.

e Homomorphism: Given two sets X and Y, a mapping f : X — Y is a homomorphism
when it preserves some structure. For example, if X and Y are groups, a homomorphism

preserves the composition law of the groups. That is, if z;,2, € X and f(z,), f(z,) € Y,

then f(zq)f(xy) = f(zy25).

Beyond these fundamental characteristics, group theory encompasses a vast and profound realm
of mathematical exploration. One relevant aspect within this field is the concept of a group
representation[30], denoted by D. A group representation is a homomorphism that maps
elements g, € G of a group G to linear operators D(g;). Alternatively, a group representation
can be understood as a one-to-one correspondence between elements of the group G and matrices,
expressed as D(g) for g € G. A representation D is said to be faithful if it is injective.

The vector space on which these matrices, D(g), operate is commonly referred to as the
representation space. The dimension of the representation space corresponds to the dimension
of the representation itself. If we consider a vector from the representation space of D(g) and
observe that the action of D(g) on this vector, within a specific subspace, yields another vector
residing in the same subspace, then the representation is categorized as reducible. Conversely,
an irreducible representation does not possess such invariant subspaces. In summary, these
properties enable us to express any reducible representation of the group G as a direct sum of
irreducible representations. The groups that are relevant to us are the Lie groups. Lie groups
are groups whose elements are labeled by a set of continuous parameters.

Another concept relevant to our purposes is the direct product. The direct product of two
vectors u and v is denoted by (u,v). An operator U : V' — Vis considered unitary if, for every
v,w €V, (v,w) = (Uv,Uw). A unitary representation of a group G is a homomorphism that
maps elements of the group to unitary operators.

The orthogonal group of degree n is defined as the group of real matrices whose inverse

coincides with their transpose:
O(n,R)={A € GL(n,R): ATA=AAT=1,}. (2.1)

The subset of O(n,R) including matrices with determinant 1 is called the special orthogonal

8



group of degree n:
SO(n,R) = {A € GL(n,R) : ATA=AAT =1, ,det A=1}. (2.2)

The generalization of the orthogonal group of degree n to the complex field is the unitary group

of degree n, defined as:
U(n,C)={A€GL(n,C): ATA=AAT =1}, (2.3)

where AT is the conjugate transpose of A. The subset of U(n) containing matrices with deter-

minant equal to 1 constitutes the special unitary group of degree n:
SU(n) ={A € U(n),det A=1}. (2.4)
Consider an element U € SU(n). U can be represented using the exponential map:
U= e X — e~ 0aXa, (2.5)

where 6, are real parameters, and X, represents matrices. Each X, can be found by computing:

G
X, =1 a0,

(2.6)
0=0
These matrices X, are called the generators of the (Lie) group. The generators form a basis for
the real Lie algebra associated with the corresponding Lie Group. With this, we can define a
Lie algebra as a linear space spanned by linear combinations ZZ 0, X, of the generators.
The commutator is defined as [A, B] = AB—BA. The Lie Algebra is defined by the commutation
relations between the generators of the group. These commutation relations are written as:
[Xa7Xb} =1 achm (27)
where f,;. are called structure constants. For example, the Lie algebra so(3) is defined by the

commutation relations:



These relations are fulfilled by the generators of SU(2):

R IR R
where we have introduced the Pauli matrices ¢, which satisfy the following relations:
0%, 07] = 2ie; 0%, {007} =26,;1, o'0! = ;1 +ie;;.0" (2.10)
The group elements of SU(2) are of the form:
U=ei%?, (2.11)
which transform two-component objects called spinors:
x — x =Uy, (2.12)

leaving their Hermitian product invariant nfy’ = nfUtUx = n'y.
The groups SO(3) and SU(2) are locally equivalent, but there is a global difference. For

example, if we take a 27 rotation around the z axis, we can represent that rotation by:
e 2ms =1, 4 (2.13)
for vectors under SO(3). Nevertheless, the same transformation for spinors under SU(2) is:
e 2ml’ — 1, . (2.14)

Thus, two complete rotations are needed to return to the original state.

2.1.2 Irreducible representations of SU(2)

The groups that are relevant for the Standard Model, and most of particle physics, are U(1),
SU(2), and SU(3). In this section, we focus on the study of the SU(2) group.
It is common to define the su(2) algebra in terms of the generators .J, which satisfy the

commutation relations:
J

[T, J,] = i€y, (2.15)

abc

Supposing that .J; is represented by an N x N hermitian matrix and diagonalizing it, our objective
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is to determine the matrix representation for the elements of the rotation group and ascertain

the dimension of the objects that undergo transformations under the group’s action.

To achieve this, it becomes essential to identify the Cartan subalgebra, which encompasses
the maximum count of independent operators that can be simultaneously diagonalized. In this
context, we introduce the Casimir operator, which plays a crucial role in the study of the group’s
representation:

J2 = JiJt. (2.16)
This operator commutes with all the generators:
[J2,J,] = 0. (2.17)

According to a corollary of Schur’s lemma, J? must be proportional to the identity operator.
The proportionality constant, denoted as C,, may vary depending on the specific representation.
Thus, we have:

J2=0C,1,, (2.18)

where the constant C, is referred to as the quadratic Casimir. Given that [J?,J,] = 0, the

elements of the Cartan subalgebra in our case are {J 2.J 3}.

Now, we build a basis of states to set up the eigenvalue problem. As in quantum mechanics,

we label the states by |7, m), where m is the eigenvalue of J3:
J?|j,m) = mlj,m), (2.19)

and j is a common label for all the states that belong to the same multiplet, which coincides

with the largest eigenvalue of J3, such that

T2j:3) = dli: 3)- (2:20)
Now, we define the ladder operators:

JE=Jt +iJ?. (2.21)
In terms of these operators, the su(2) algebra becomes:

[J3, J*]) = +J*, [JF,J7]=2J3, (2.22)

11



and due to hermiticity:
(JHt=Jt. (2.23)

We compute the action of J3J* on the states |j, m):

JEJE|jm) = (JEJP £ JE) [jm) = (m £ 1)J%]j,m), (2.24)

meaning that the state J*|j,m) is an eigenvector of J® with eigenvalue m + 1. Therefore,
J*|4, m) must be proportional to the state |j,m + 1). Since the maximum value of m is j, we
must have:

T, ) = 0. (2.25)

It can be shown that the following relation holds:

This relation implies the existence of a lower bound for the lowest value of m. Consequently,

denoting this state as j’, there is a state annihilated by J—:
J714,5") =0. (2.27)
It can be shown that the corresponding values of C, and j are:
Cy=3j(+1), j=-Jj (2.28)

Finally, both ends of the ladder must be connected by a finite number of steps. Thus, for some

integer n, we have:

(S )" g =) ~ lid) = —j+n=j=j=5. (2.29)
This means that j takes semi-integer values.
For the states to be normalized, we must have:
JHjym) = /(= m)(G+m+1)]j,m+ 1), (2:30)
T ljym) = /(G +m) (G —m+1)[j,m —1). (2.31)

12



Summarizing, the irreducible representation of SU(2) is determined by the relations:

I23,m) = 35+ Dlj,m), J3|j,m) =ml|j,m),
JEj,m) =/ (GFm)(GLm+1)]j,m£1), (2.32)

j:§7 nEZ, m:_]7_3+177j_17.7

The explicit form of an irreducible representation of SU(2) is determined by either the value of

j or the dimensionality of the representation. The rotation matrix is given by:
D;)(0,0) = e e, (2.33)

which is a (2j + 1) x (27 + 1) matrix for the irreducible representation of spin j. Additionally,

the associated generators are also (25 4+ 1) x (2j 4+ 1) matrices, whose elements are given by:

mo

(o T2 s m) = VG DG =6 s, (2.34)

/,mo

Let’s work out the generators for the simplest irreducible representations.
The minimal value that j can take is j = 0. This corresponds to the trivial representation, which
is a representation of dimension one:

0,0) =1, (2.35)
Jiyy =0 —  Dy(6n) =1 (2.36)

For j = 1/2, we have the fundamental representation:

E9-0) B-D-0)

1/1 0 0 1 0 0
3 _ + _ _ o

In terms of the Cartesian components, the generators for j = 1/2 are given by:

Jl = % (J- 4 J5) = % ((1) (1)) , (2.39)
J? = % (J-—J%) = % (? 7;) : (2.40)

13



and we recover 4
i o

For j = 1, we have the adjoint representation:

1 0 0
11,1) = (o) ;1,00 = (1) R (0) : (2.42)
0 0 1

0) . (o —i 0) (1 0 0)
1 JE=—1i 0 —i J3, =10 0 0 |. (2.43)
v Jy v J

V2o i o 00 —1

<
N

|
Sl
)
O\
O = O
[ R
(@)

2.1.3 Direct product of irreducible representations

We consider two independent SU(2) systems, denoted as A and B, each with its own algebra:

[Jibjix] = ieijk‘]ﬁv
[74, 5] =o.

The system undergoes transformations under the direct product group SU(2) 4 ® SU(2)z. Our
chosen set of complete commuting observables consists of {J ?4, J f‘, J%,J %} Consequently, the

states can be expressed as:
|jA,mA>®|jB,mB>E|jA,mA;jB,mB>. (2.45)

The SU(2) 4 ® SU(2) 5 representations can be derived by taking the direct product of individual

SU(2) irreducible representations:
D(0,0) = D;4)(0,0) ® D(;5)(0, n). (2.46)

These representations are generally reducible. Therefore, it is advantageous to describe the

system using an alternative set of observables, which incorporates the total angular momentum:

14



An alternative complete commuting set of observables is {J 2. J3.J ?4, J ZB} We label the states
as |J, M, j4, JB> = |J M). This basis satisfies

J2|JM) = J(J + V)|JM), J3|JM) = M|JM), (2.48)

and facilitates the decomposition of the direct product representations into irreducible ones

D(6,0) = D;a)(0,8) ® Dz (6,8) = @ D (0,h). (2.49)

J=[3B—54]
Now, it is essential to establish the connection between the eigenvalues and their ranges and
determine the Clebsch-Gordan coefficients that underpin the linear relationship between both

bases. It can be shown that
T34, mA) |58, mP) = (m? +mB)[j4, m4) |57, mP). (2.50)

Furthermore, the ladder operators J, establish connections between all states that transform
under the same irreducible representation, denoted by J. The maximum value of J is determined
by 4+ 5%, while the minimum value is given by J = |jZ—j4|. For each value of .J, the parameter

M assumes values between —J and J in increments of size one.

2.1.4 The algebra of the SU(3) group

The SU(3) group is characterized as the set of 3 x 3 complex unitary matrices U with a determi-
nant equal to 1. The algebra’s dimension is dim SU(3) = 8. One frequently employed defining

representation is expressed using the Gell-Mann matrices A,, analogous to the role played by

a’

the Pauli matrices for the algebra of the generators of the SU(2) group:

01 0 0 —i 0 1 0 0
M=|100], Mm=[i 0o o], =0 -10],

00 0 0 0 0 0 0 0

00 1 00 —i 00 0
M=loool], x=lo0oo0 0o |, x=]001],

10 0 i 0 0 01 0 (2.51)

00 0 (100

0 i 0 AN
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The generators X, of the su(3) Lie algebra are then

1
X, ==X\, (2.52)
2
These generators are normalized as follows:
1
The su(3) algebra reads
[XwXb} =1 achc’ (254)

where the fully antisymmetric structure constants with nonzero entries are

3
Ji2s =1, [fiss = fors = \2[7 (2 55)

f147 = f165 = f246 = f257 = f345 = f376 = 5

2.2 The Standard model of particle physics

The Standard Model (SM) is a quantum field theory that stands on a robust phenomenological
foundation. It exhibits a remarkable predictive power in terms of various particle properties
and interactions[31, 32]. Within the SM framework, three out of the four fundamental forces of

nature are explained as arising from interactions via gauge bosons.

2.2.1 Standard Model ingredients

In the Standard Model, we employ fields to represent elementary particles, with each elementary
particle being a quantum of the corresponding quantum field. Based on their spins, elementary
particles can be classified into elementary bosons and elementary fermions. Most elementary
bosons are spin-1 gauge vector bosons, and they function as the force carriers for the fundamental
interactions.

Fermionic particles, on the other hand, interact with each other by exchanging these gauge
vector bosons. This exchange of gauge bosons mediates the interactions between fermions,
leading to the rich array of phenomena observed in particle physics[33]. The foundation of the
Standard Model lies in the local symmetry group SU(3),.xSU(2);, xU(1)y, where the indices have
no mathematical meaning, but they refer to color, weak isospin, and hypercharge, respectively.

This gauge structure uniquely governs the dynamics of the strong, weak, and electromagnetic

interactions that take place between matter particles and force carriers. The coupling constants

16



associated with these interactions are precisely determined through experimental investigations,
thus providing a robust framework that successfully accounts for a wide range of particle physics
phenomena.

The key ingredients of the Standard Model are:

o Vector fields: 8 non-abelian gauge bosons associated with SU(3),. known as gluons,
represented by G%, with a = 1,...,8; 3 non-abelian gauge bosons associated with SU(2) ;
denoted by W/, with ¢ = 1,2, 3; and an abelian one corresponding to U(1), denoted by
B*. Gluons mediate the strong interactions, the weak interactions are mediated by the

charged W and Z bosons, and photons mediate electromagnetic interactions.

o Spin 1/2 fermion fields: Left-handed Weyl spinors transforming as isodoublets (Left-
handed Weyl spinors belong in the representation (1/2,0) of the Lorentz algebra):

(92 ().

(2.56)
Q. = U c t
L — d ) s ’ b )
L
and right-handed Weyl spinors transforming as isosinglets:
€ir = {67 , T}R: U;p = {ua c, t}Rv dz‘R = {dv S, b}R (257)

There are two kinds of fermion fields: quarks, transforming as triplets under SU(3)., and

leptons, which are singlets under color.

o Scalar fields: One isodoublet transforming as a singlet under color:
Kt
H= <h0> . (2.58)

The SM fields and their transformation properties are summarized in the following table:

| Field [ SU(3) | SU(2) | U(1) |

Q.| 3 | 2 | 1/6
U 3 1 2/3
d;r 3 1 —1/3
L, 1 2 —1/2
€iR 1 1 -1

H 1 2 1/2

Table 2.1: SM transformation properties

17



The representation of the fields is usually denoted as (a, b, ¢), meaning that the given field

is an a-plet under SU(3),, b-plet under SU(2),, and has hypercharge c.

2.2.2 Glashow-Weinberg-Salam Electroweak Model

The Standard Model is also known as the Glashow-Weinberg-Salam model, and our main focus
will be the electroweak part of the theory. We can express the compact form of the Standard

Model Lagrangian as follows:
’CSM = ’Cgauge + ’Cfermion + ’CHiggs + ’CYukawa ) (259)

which includes the gauge, fermion, Higgs, and Yukawa sectors of the theory. In our present
focus on the electroweak portion of the model, described by SU(2) x U(1), we designate the
generators of SU(2) as T}, and the generator of U(1) as Y. The algebra of the generators satisfies
the following relations:

[T}, T} =ie; Ty, [T;,Y] = 0. (2.60)

177 ]

For the gauge bosons, we define the matrix value fields
wr =T,Wk. (2.61)

The electric charge generator is embedded into the electroweak symmetry according to the Gell-
Mann-Nishijima formula
Q=T1T;+Y. (2.62)

The local invariance of the SM Lagrangian is implemented by the covariant derivative
Dt = 9k + igWH +ig'Y B = 0" + igT,W! +ig'Y B*. (2.63)

where g and ¢’ are the SU(2) and U(1) couplings, respectively.

The kinetic Lagrangian density for fermion fields is
Ltormion = ELM”D#LL +eriv' D ep + QLi'y“DMQL +ugpiv' D, up + JRi’y“DudR. (2.64)
Explicitly, for leptons, we have
Liepton = L iy* <8u + %gTin - ;g’BM> L; + egiy* (ﬁu - ig’BM) er (2.65)
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and for quarks

L nark. =Qriv" (8 + gT“A"“ 4 g 'B > Qr
g ; (2.66)
+ TTLRZ’}/# <8'U* + §g/BN) uR + dRZ"}“u (8'“* — gg/BM> dR

At this point, all particles are considered massless. The inclusion of mass terms would break
gauge invariance. To include mass terms for fermions, the Higgs mechanism[34] for Spontaneous

Symmetry Breaking is necessary and will be introduced in the next section.

The kinetic lagrangian density for gauge fields is

1 14 14
Loonge = —5Tr (wew,,| — ZBWB“ (2.67)
where
WHY = DFWY — DVWH, (2.68)
BM = DHBY — DY BH, (2.69)

We can also express the Lagrangian term for the charged current interaction, which involves the

non-diagonal generators of SU(2), as follows:

g — —
’Ccharged = _5 {LLPYM (le,ul + 7_2Wp2) LL + QLPYM <7_1Wp1 + T2 ) QL} (270)
We define
1 )
Wi = 7 (W1 FiW,,) (2.71)
to obtain
1 _ ] _
WMI == ﬁ (WJ + WM ) 3 WNQ = E (I/Vv;L - WM ) 5 (272)
which enables us to write
g (= T _ 1T _
Conmea == S { Lt |3 Wi+ W)+ 2 (Wi = W,)| L

(2.73)
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It can be demonstrated that by defining the charged currents as:

Ty =2 [éL’Y#VL + JL7#UL] )

s B B (2.74)
Jyw =2[pyten +ugytdr],
the above expression simplifies to:
__ 9 B — T+
Lorarged = = 7 (TG W, + W] (2.75)
The Lagrangian term for neutral current interaction is given by:
_ Foou’s3 3 us 13
L‘neutral =—9g LL’Y EWMSLL + QL'Y SEWMBQL
+ % [Ly"B, Ly + 267" B,ep) (2.76)
g 11 - 4_ 2 -
Y |:3QL7MBNQL + guR’YHBMUR - ng’Y“BMdR .
In component fields, the leptonic sector can be rewritten as:
neutra. 77 g g/
L‘leptt)nsl :VLV”VL <_2Wu3 + 2BM)
, (2.77)
_ g g =
+eryter <2Wu3 + QB#> +g eR'y”eRBu,
while for quarks, we have
neutra, = g g/ 7 g g/
’Cquagksl =ury up, _7Wu3 - 7Bu +dpytdy 7Wu3 - *B#
2 6 2 6 (2.78)

2_ 1-
-7 [3uR’y”uRBM — BdR’y“dRBM} .

The Higgs potential is included in the Ly, term and triggers the spontaneous symmetry break-
ing. The term Lyypawa contains the Yukawa interaction between the Higgs and SM fermions.

These processes are responsible for mass generation and will be studied in the following sections.

2.2.3 Spontaneous Symmetry Breaking

As mentioned earlier, fermions are initially considered massless in the Standard Model. How-
ever, directly introducing mass terms would violate gauge invariance, a fundamental symmetry
of the model. To incorporate mass terms for fermions while preserving gauge invariance, the

Higgs mechanism for Spontaneous Symmetry Breaking (SSB) is employed.

20



To understand how it works, we study the scalar sector, described by the Lagrangian density:
£Higgs = (DMH)T (DHH) —V(H), (2.79)

where H is the Higgs doublet introduced in (2.58). The spontaneous symmetry breaking of the

electroweak theory occurs when the potential is chosen as:
V(H) = —p2H'H + X (H'H)?, (2.80)

with 2 > 0and A > 0. There are infinitely many degenerate vacua characterized by a continuous

phase «, and the vacuum expectation value (VEV) is given by:

(H) = “\‘g ( ; ) . (2.81)

Without loss of generality, we can choose o = 0, resulting in:

(H) = % ( (1) ) . (2.82)

The value of v is determined by the minimum condition:

oV 0 ( 1,5, 1
= —— =— | —=p v+ f)\v4> = —pu?v + \vd. 2.83
0 (vV2Reh?) oo\ 2" 4 8 (2:83)
H=(H)
In the broken phase, the only solution is v? = “72 This non-zero VEV is what gives us the

so-called spontaneous symmetry breaking.
For the VEV to be compatible with the preservation of U(l)Q after Electroweak Symmetry

Breaking (EWSB), it must be invariant under an infinitesimal U(1) transformation:

e Q(H) = (1 +iQe)(H) = (H) (2.84)

21



or, equivalently, ) must annihilate the vacuum Q(H) = 0. Explicitly,

Y)
(1)—01>+<(1]§)>]<v/?@) (2.85)
0
0

As observed, the non-zero VEV of the Higgs field retains the conservation of electric charge,
maintaining the unaltered charge symmetry. However, this VEV breaks the electroweak gauge

symmetry in the following manner:
SU(2);, x U(1)y — U(1)q, (2.86)

A convenient parametrization for the scalar doublet is

+ - 0
H= ( ’20 ) = e tTi&(@)/v ( o ) : (2.87)
V2

where the T/ are the three broken generators T}, T, and T — Y, and the fields ¢, p are real.

To identify the particle spectrum of the Standard Model, it is advantageous to work in the
unitary gauge, involving unitary gauge transformations Ugyg) = e'Ti%(®)/2 and Uyay = e 02,
where 6,(z) = &;(z)/v and 0 = &;(z)/v. Under these gauge transformations, the Higgs field H

transforms as follows:

0
H — Ugy)Uy)H = ( % ) , (2.88)
2

where h represents the physical Higgs boson. In this choice of gauge, only the physical degrees
of freedom appear in the Lagrangian. The fields ¢; are the Nambu-Goldstone bosons associated
with the breakdown of 3 out of 4 generators of the electroweak symmetry that are absorbed
by the gauge fields and ultimately become the longitudinal degrees of freedom of the massive
physical vector fields.

It can be shown that in the unitary gauge, the kinetic Lagrangian for H takes the form

g 1
L5 = S0Mh0h + o [2°WHIW, 4 (—gWg' + ' B*)°] (0 + h)?. (289)
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Simplifying, we obtain

in 1 92 _
Lk 258“h3uh + Z(v + h)PWHTW

, , 2 (2.90)
L) e (V9B
8 /g2 +g’2

The last term can be further simplified by noticing that:

2
gWi — g’ B¥ 1 2 _gd %%
? = 2 ’2 ( W; B ) _g / gzzg B'u3 5 (291)
Vg>+g7? 9°+g 99" g "

which can be diagonalized by an orthogonal transformation of the form:

Ugf)‘(—csz c$)<i”) (2:92)

where ¢y, = cos 0y, Sy = sin by, and 0y, is the weak (or Weinberg) angle. The weak angle can
be determined explicitly as follows:

2
gWy' —g'B"
/92 +g/2

_ (zr Am) Cw —Sw 9 —g9 ‘w  Sw Zy

g%+ g Sw Cw —qq"  g* —Sw Cw A, (2.93)

1
:‘92+g/2(ZM Aﬂ)
2_ /2 .
(gew + glfwl)j —gg’ cos 20y, + % sin 20y ( Z, ) '
—gg’ cos 20y, + % sin 20y (gsw — g’cw)2 Au
From the diagonal condition, we obtain:
299’
tan 260y, = gy (2.94)

By identifying A* with the massless photon, we find:
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The solution to both equations is

/

9 g

P S — (2.96)
w /g2+g/2 w 92 +g/2

In terms of the physical gauge bosons, the kinetic scalar term becomes

(92 + g/2>

o 2212, (2.97)

in 1 92 _
Lhin — ia“hauh + Z(v +h)PWHW, +

We can read the mass terms for the mediators of the weak interaction

2.2 2 2\ 2
g*v _ (P +gP)v 1
TWMerlﬁ + ifZ“Zu - MI%VWMJrWM + EM%ZNZ/“ (298)
where: ) ) o o
Mg, = g: , M%= (g +49 v , (2.99)

and these masses are related by My, = ¢y M.

The W+ and Z bosons mediate the weak interactions. The W+ bosons, discovered in
1983[35], are the charged partners of the weak force, while the Z boson, also discovered in
1983[36], is the neutral counterpart. Notably, these massive vector bosons are directly linked to
broken symmetries. The strong force carriers (gluons) and photons remain massless, while the
weak force carriers (W* and Z bosons) acquire mass due to spontaneous symmetry breaking

through the Higgs mechanism.

Expressing the Higgs potential in terms of the VEV, we have:

2\ 2 4
A
V(H) = (HTH—”Q) —%, (2.100)

which, in the unitary gauge, becomes:

4 4
V(H) =\ (v2h2 +vh® + Z) — %. (2.101)

Analyzing the quadratic term in h, we can determine the squared mass of the physical scalar:
1
iMi,hz = \?h? = ME =2\ (2.102)

This mass corresponds to the Higgs boson observed in 2012[37]. The measured value is My =
125.25 4+ 0.17 GeV([33].
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2.2.4 Fermion masses

To unravel the mechanism behind mass generation for Standard Model fermions, a careful exam-
ination of the Yukawa interaction term is essential. These interactions encapsulate all possible
contractions between scalars and fermions while preserving the defining symmetries of the model.

The Yukawa interactions are embodied in the Lagrangian term:

Lyw =— L Hy.en— éRylHTLL — QpHy,dp — JRy;HTQL

_ . R (2.103)
—QrHy,up — uRyuHTQL'

Here, the matrices vy, v,,, and y,; are 3 x 3 constant complex matrices. Additionally, H denotes

the charge conjugate of H, defined as:

. 0
i = iy H* = ( _hh, ) b= (2.104)

~

where Y(H) = —1/2 represents the hypercharge of the charge conjugate scalar field A.

After EWSB, mass terms are induced for all charged fermions in the model. As usual, the

mass spectrum is easily found in unitary gauge, where

’CYuk = _ELHyeeR - C?LI{yddR - QLﬁyuuR + h.c.

:—%(DL éL><v_?_h>ye€R_\}§<ﬂL JL><UEh)yddR
—\2 (a, d) ( v—(l)—h )yuuR—l— h.c. (2.105)
_ Ye(v+h) ; Ya(v+h) Yu(v+ 1)

up + h.c.

= < ter—d; H—Ldr —u
€r, NG €Rr L NG R UL /2

In general, the mass matrices for the charged fermions in the Standard Model are given by:

v
Me =Ye— 0=

v v

These mass matrices are generally non-diagonal 3 x 3 complex matrices, implying that the
interaction states and the states with well-defined masses (mass eigenstates) do not necessarily
coincide. This means that the fermion fields that participate in the weak interactions, known
as the interaction states, are not the same as the fields that have definite masses, known as the
mass eigenstates. In the case of neutrinos, which were considered to be massless for a long time,

it is possible to redefine the fields in a way that makes the mass matrix M, diagonal without
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any physical implications.
Transitioning to quark Yukawa interactions, let’s consider the Standard Model fields in the
interaction basis, denoted by a superscript 0. Using this notation, the quark Yukawa interactions

in the unitary gauge can be expressed as:
quark _ -0 LA 4o h d°% + h
Lo = —up M, (1+ = Juf —dp My (14— ) dip +hee. (2.107)

To identify the physical fields, we need to diagonalize the complex matrices M, and M, through

a bi-unitary transformation:
M = VEm Vit M= vimavi, (2.108)

where V' and VLd r are 3 x 3 unitary matrices, and m*, m?

are diagonal matrices with non-
negative entries. This bi-unitary transformation defines a basis for the mass eigenstate fields
as:

upr = ViR g dpr =V g} e (2.109)
In this new basis, the quark Yukawa interactions simplify to:
quark — h - h
Ly = —ugmy (14— Jup —dpmg (14 ) dp +hee. (2.110)

We can now express the quark gauge interactions in terms of the mass eigenstates. For the

neutral currents, the Lagrangian is given by:

Lreatral [_ng;AM - —209 ngﬂ} , (2.111)
w quarks
where J} I 2uytu — +dy"d represents the electromagnetic current and J§|quarks =
upyruy —dLy*d; — 25%,VJ5| . represents the weak neutral current.
quarks

This implies that both the electromagnetic current and the weak neutral current have the same
form in the mass and flavor basis. As a result, both currents are flavor diagonal and family
universal. This feature, known as the GIM (Glashow-Iliopoulos-Maiani) mechanism[38], was
originally introduced to suppress unobserved flavor-changing effects and predict the existence of
the charm quark. Without the GIM mechanism, the d and s quarks would not have the same

electroweak quantum numbers, leading to flavor-changing-neutral currents.
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In contrast, for the charged currents, the Lagrangian is given by:

charged
L quarks

[do Yru§ W, + afy*dy W]

[dL’}/“V Wi Wy + gy v vEd, Wit (2.112)

s\ x\wm

[dL’YMVCKM“LW + up " Vekmd Wy, }

where we have introduced the unitary Cabibbo-Kobayashi-Maskawa (CKM) matrix[39, 40]:

Vud Vus Vub
Vexm = VETVLd = Vea Ves Vo (2-113)
Via Vis Vi

which describes the mismatch between the unitary transformations relating the weak and mass
eigenstates for the up and down quarks. By convention, we absorb the action of Vi on d-type

quarks, which allows us to write:

harged g ~ mix = mix I mix
L'zuzrii = -7 [(py dp™ + eyt s> + ) y"by )W +he. ], (2.114)

where we define the mixed states:

mix

d Vud Vus Vub d
s = Vg Vs Vo s . (2.115)
b/ Vi Vie Vo / \0 /),

The CKM matrix, Vogp, can be parametrized using three mixing angles and one C'P violating
complex phase, which encode the flavor-changing weak decays of quarks and play a crucial role
in flavor physics phenomenology. The most popular parametrization of the CKM matrix, as

provided by the Particle Data Group (PDG)[33], is given by:

1 0 0 Ci3 0 53¢ 013 Cia  S19 O
Voka = 0 co3  So3 0 1 0 —S13 ¢z 0
0 —Sy3 Co —s5y53€T13 0 C13 0 0 1
C12€13 (2.116)
$12€13 s13€ 0
= | —s12Co3 — C12593513€ 018 CiaCog — 519593513613 Spzcyz |
S19893 — C1oCo3813€018  —CinSy3 — 819Co3813€13  Coeyy

where s;; = sinf,;, and ¢;; = cosf,; represent the mixing angles, and 4,3 is a C'P violating

phase.
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2.2.5 Radiative Corrections and Anomaly Cancellation

Feynman diagrams devoid of loops represent tree-level processes. However, at higher orders,
corrections known as radiative corrections come into play. In such cases, the corresponding
Feynman diagrams involve loops. Under certain circumstances, these radiative corrections have
the potential to disrupt the symmetries inherent in classical equations of motion. A classical

symmetry affected by quantum effects is deemed anomalous.

Noether’s theorem establishes that continuous global symmetries imply the existence of con-
served currents. However, when a symmetry becomes anomalous, it ceases to be a genuine
symmetry, and the associated current is no longer conserved. In the realm of unitary quantum
theories, gauged symmetries must be anomaly-free. This requirement holds true in the SM,
where the electric charge is compelled to be quantized, and the charges of quarks and leptons

are interrelated.

Anomalies linked to gauge bosons are referred to as gauge anomalies. In cases where a
symmetry is not gauged, anomalies pose no issues. Global anomalies, such as those associated

with baryon and lepton number conservation, do not result in inconsistencies within the SM.

For chiral fermions, the cancellation of chiral anomalies is imperative to ensure the consis-
tency of the theory. Symmetries under which left and right-handed fields transform identically
are termed vector symmetries, while those transforming with opposite charges are referred to as
chiral symmetries. The currents associated with these symmetries are denoted as J* = 1y 1)

and JH*® = 9yy"~51), known as the vector current and axial current, respectively.

At the one-loop level, in the presence of a gauge coupling to fermions, J*° is not conserved,
leading to an anomalous breaking of chiral symmetry[41]. For non-abelian gauge theories, the
currents associated with gauge fields take the form Ji = > " @iT i7", where T represents

the group generators.

From the summation of two triangle diagrams resulting in the chiral anomaly, terms of the

form
b 1 b 1 b 1 b Lo
tr [T“T TC] =5 tr [[T“,T ] TC] + 3 tr [{T“,T }TC] = ZiTRfa ¢ 4 Zd?f (2.117)
can be derived. It can be shown that

tr [Ta{Th,T5} = A(R) tr [T {T*,T°}] = A(R)d*, (2.118)
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where A(R) is the anomaly coefficient. The divergence of the current is given by

d,J%(x (ZA (R)— > A(R ) T ——dabechveSpY Fe (2.119)
left right

Upon considering each fermion within the theory, the diverse contributions must mutually cancel

for every conceivable combination of generators from each gauge symmetry, encompassing the

mixing of different gauge symmetries. In the SM, any anomaly with precisely one factor of SU(2)

or SU(3) is effectively canceled.

In the context of combinations involving two SU(3). bosons and one U(1)y boson, the
anomaly arises solely from quarks. Utilizing the property tr{T°T"} = 16, we can deter-
mine that

1 2 —1

Te{T* Y} =6Y,—-3Y, —3Y,=6--—-3--—-3-— =0. 2.12
tr[{,}]6Q3u3d6633330 (2.120)

For the SU(2)? U(1) anomaly, contributions only emerge from left-handed fields, resulting in

e[ (V)] = 2¥, 46V, =2 L 46 =0 (2.121)

Addressing the U(1)3 anomaly, the expression becomes:

2VE — Y2 —V3)+3 (203 -V —Y}) =2 (_;>3_<_1)3+3<2)<é>3_3 (;)3_3 (_1)3 _

Ensuring the cancellation of graviton anomalies in the SM focuses on grav? U(1)y~
1 1 2 1

o, v vy ea v, v v =2 () - Cus (- (2) - (1)) -

(

Thus, every anomalous contribution vanishes, ensuring the consistency of the SM.

It is noteworthy that baryon number, where quarks have B = 1 and leptons B = 0, and
lepton number, where quarks have L = 0 and leptons L = 1, are anomalous in the SM. However,
the global symmetry B — L, with quarks having B — L = % and leptons B — L = —1, remains

non-anomalous.

2.2.6 The Lorentz Group

This section presupposes a basic understanding of special relativity, omitting certain definitions
and focusing on aspects pertinent to subsequent chapters. The Lorentz group constitutes the

most comprehensive set of transformations that preserves the Minkowski metric: ATgA = g.
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Within this group, fundamental transformations include rotations and boosts. Any Lorentz

group element can be uniquely expressed as:

where J; represents the generators of rotations, and K; denotes the generators of boosts.

Two discrete Lorentz transformations, known as parity and time reversal, are noteworthy.
The parity transformation, denoted as P, entails changing the sign of spatial coordinates while

leaving the time coordinate unchanged:
P:(t,x,y,z) = (t,—x,—y,—2). (2.125)

Conversely, the time reversal transformation, denoted as T, involves changing the sign of the

time coordinate while keeping spatial coordinates constant:
T:(t,z,y,2) = (—t,x,y,2). (2.126)

The collective group of translations and Lorentz transformations is referred to as the Poincaré

group, denoted as ISO(1,3). The Lorentz group itself is sometimes denoted as O(1, 3).

In relativistic quantum field theory, particles are described by irreducible unitary representa-
tions of the Poincaré group. The Lie algebra of a group is defined by the commutation relations
among its generators. For the Lorentz group, the generators of rotations and boosts satisfy the
following commutation relations:

[Jm Jj] = ieijkjkv
[J;, K] = i€, Ky, (2.127)
The generators of the Lorentz group constitute the algebra corresponding to the part connected

to the identity, referred to as the proper orthochronous Lorentz group (O*(1,3)). The proper

Lorentz group SO(1,3) encompasses elements with a determinant equal to 1.

Scalar fields, denoted as ¢(x), are functions of spacetime that remain invariant under Lorentz
transformations, preserving their form. The transformation of a scalar field under a Lorentz

transformation A} is expressed as:

¢(x) = d((A™1)pa”). (2.128)
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In contrast, 4-vectors V* transform under Lorentz transformations as:
VHE — ADVY. (2.129)

The generators A; and B, are derived as linear combinations of the generators of rotations (.J;)
and boosts (K;):

1 . 1 .
Ap= 5 +iKy), By = 5(J; —iK;). (2.130)
These generators satisfy the commutation relations:
[AivAj] = iez‘jkAka
[B;, B;] = i€; ;. By, (2.131)

These commutation relations illustrate that the Lie algebra for the Lorentz group can be de-

composed into two commuting subalgebras:
so(1,3) = su(2) ®su(2). (2.132)

Each irreducible representation of su(2) is characterized by a half-integer value j, acting on a
vector space with 2j + 1 basis elements. Accordingly, irreducible representations of the Lorentz
group are defined by two half-integer values denoted as a and b, where the (a,b) representation
has (2a + 1)(2b + 1) degrees of freedom.

For example, there exist two complex representations of J = % denoted as (%, 0) and (0, %)

The Pauli matrices, o, satisfy the commutation relations:

Rescaling the Pauli matrices, we get:
g; 9 T
[5, ﬂ i€ (2.134)

The generators of the Lorentz algebra so(1,3) in the (3,0) and (0, 3) representations can be

expressed as:

1 1
— i A=-—- B = 2.1
(5:0) ;0. B=0, (2.135)
(01)- A=0, B--+ (2.136)
3 =0, = 30 :



It is also true that the generators of rotations are given by J = A + B, and the generators of

boosts are K = i(B — A). Consequently, we find:

1 1 j
(f 0> : J= 50, K= —%o,
(2.137)

The elements of the vector space on which the spin—% representations act are referred to as
spinors. In this context, the (%, 0) spinors are known as left-handed Weyl spinors, while the (0, %)
spinors are termed right-handed Weyl spinors. Fields are spinor-valued functions of spacetime,

represented as:

Yr(z) = ( i;g; ) : (2.138)

for the (0, ) representation. Similarly, we denote ¢, () for the (3, 0) representation. The (,0)
representation acts on 1; as
Pp, — e 30Ty, (2.139)

and similarly for i p:
Y — e 2(0B0)y (2.140)

These two spinors can be combined into a four-component object known as a Dirac spinor:

)= ( :ﬁ; ) : (2.141)

Armed with the concepts and tools introduced so far, the next chapter will explore mass gener-
ation models for neutrinos, which is an intriguing topic in particle physics. Various mechanisms
have been proposed to elucidate the tiny but non-zero neutrino masses observed in experiments.

But first, a quick review of dark matter is presented.

2.3 Dark Matter

This section draws heavily from the insights presented in Majumdar’s book[42]. A remarkable
aspect of our universe is the prevalence of dark matter (DM), constituting approximately 26% of
its total content. The term “dark matter” originates from the fact that this substance behaves
like matter from the point of view of the Friedmann equations, in the sense that it does not
apply pressure, but it is not charged under electromagnetic interaction, and therefore it is

not observable. The model to be presented in this thesis introduces candidates for dark matter,
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prompting a concise exploration of this mysterious entity. Given the considerable efforts invested
in developing theories to unravel the nature of dark matter, it is crucial to address why there
exists a high level of certainty regarding its existence. Numerous pieces of evidence support the
existence of dark matter. In the subsequent sections, we will briefly explore key proofs that

contribute to the compelling argument supporting the existence of dark matter.

2.3.1 Evidence of dark matter

An apparent incongruity emerges when comparing the observable mass and the gravitational
mass in the universe, hinting at the existence of a substantial unseen mass. In galaxies, stars
exhibit a relatively uniform circular motion around their center. This circular motion’s velocity
seemingly precisely counterbalances the gravitational force directed towards the galactic center,
maintaining the stars in their circular orbits. For a star positioned at distance r from the galactic
center, with a circular velocity v(r), the equilibrium of gravitational and centrifugal forces is
expressed as

mu(r)?  Gm [T

T2
T ™ Jo

p(r’)dr’, (2.142)

where p(r) denotes the galaxy’s mass density. The rotation curve, indicating the radial depen-
dence of stellar orbital velocities, reveals an unexpected observation. While the mass density
is anticipated to decrease with distance, empirical measurements of rotation curves for various
galaxies show a constant velocity for large r, suggesting the presence of a substantial unseen
mass forming a surrounding halo.

Another compelling piece of evidence for dark matter arises from the study of galaxy clusters,
gravitational bound groups of galaxies. The inference of dark matter within these clusters
involves estimating their mass based on gravitational dynamics, juxtaposed with mass estimates
derived from luminosity. Typically, the virial theorem is employed to gauge the gravitating
mass, revealing a discrepancy when compared to the luminous mass. A historical instance
involves Zwicky’s 1933 computation[43] of the mass-to-luminosity ratio for the Coma cluster
and individual galaxies, exposing a cluster ratio about 50 times greater than that of any single
galaxy.

Einstein’s general relativity describes the concept of gravitational lensing, where light bends
in the presence of gravitating mass. Astronomical observations of this phenomenon, without
concurrent detection of luminous mass, point to the existence of dark matter. The scrutiny of
the cluster 1E0657-56, colloquially known as the bullet cluster, stands as a noteworthy testament
to dark matter. In this case, the utilization of weak and strong lensing observations helped

delineate the distribution of dark matter.
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In addition to astronomical evidence, significant cosmological insights into DM arise from
pivotal moments in the early universe’s evolution. Observations related to Big Bang Nucleosyn-
thesis (BBN), the Cosmic Microwave Background (CMB)[44], energy density scaling of matter,
radiation, the cosmological constant, and supernovae type-Ia observations[45] collectively high-
light that ordinary baryonic matter alone cannot account for the entirety of the universe’s mass.
Moreover, the inclusion of DM in the cosmic energy budget proves essential for comprehending

structure formation and evolution.

2.3.2 Dark matter candidates

While the precise nature of dark matter remains elusive, categorization is possible based on its
potential production mechanisms, the particle characteristics of its constituents, or the mass of
DM candidates. Essential criteria for a viable DM candidate, as outlined by Taoso et al.[40], in-
clude neutrality under electromagnetic and strong interactions, compliance with self-interaction
constraints, stability over timescales comparable to the universe’s age, and consistency with the
appropriate relic density.

Dark matter can be classified based on whether it underwent thermal or non-thermal produc-
tion in the early universe. Thermal production involves DM generation through cosmic plasma
collisions during the radiation-dominated era. In contrast, non-thermal dark matter particles
may originate from alternative mechanisms, such as the decay of massive particles or specific
symmetry conditions.

DM candidates can be categorized based on their mass and velocity characteristics. When
DM exhibits relativistic speeds, it falls into the category of hot dark matter, possessing a mass
less than the Universe’s temperature at a relevant time. Conversely, if the DM mass exceeds the
temperature of the universe at freeze-out, it is termed cold dark matter (CDM).

Within the Standard Model, at least two of the known three neutrino species are non-
relativistic and contribute to the universe’s matter content, qualifying them as potential DM
candidates. However, their transition to a non-relativistic state occurred at very late times,
impacting the radiation budget crucial for structure formation. As a result, they are considered
hot DM. Observations of structures discount the possibility that neutrinos constitute the entire
DM abundance, despite contributing a small fraction. This limitation prompts the search for DM
candidates beyond the SM. Popular alternatives include axions, sterile neutrinos, and Weakly
Interacting Massive Particles (WIMPs).

A noteworthy example of non-thermal DM is the axion, introduced as a resolution to the
strong-CP problem. The Peccei-Quinn mechanism not only addressed the strong-CP problem

but also predicted a new massive particle—the QCD axion. While this specific axion variant
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has been excluded by particle collider experiments, alternative QCD axion models remain viable
candidates for dark matter.

Sterile neutrinos represent another potential dark matter (DM) candidate. These particles
lack any charge under SM interactions and, in the simplest scenario, only interact with SM
particles through weak interactions. This interaction is suppressed by their mixing angle with
active neutrinos, and sterile neutrinos are exempt from self-interactions. Typically, sterile neu-
trinos are anticipated to have a mass on the order of keV and could generate x-rays through
radiative decays of active neutrinos. However, cosmological and x-ray observations have imposed
constraints on the allowed parameter space for sterile neutrinos to comprise the DM.

Weakly Interacting Massive Particles (WIMPs) offer another avenue for DM candidates.
These generic massive particles, besides gravitational interactions, exhibit only weak coupling
to the Standard Model[47]. Initially, WIMPs were postulated with an interaction strength
comparable to the weak interaction in the SM[48]. This assumption, termed “The WIMP
Miracle”, relied on the coincidence that a massive particle with thermal relic abundance and
an interaction cross-section on the scale of the SM weak interaction would naturally yield the
correct relic abundance order of magnitude. The term “weakly interacting” is now applied more
broadly, encompassing particles that exhibit weak coupling to SM particles, lack direct photon
coupling, and were thermally produced in the early universe, with their relic density determined
by their freeze-out abundance. Given the diversity of particle DM candidates within the WIMP

category, a more comprehensive discussion on this candidate follows.

2.3.3 WIMP Dark Matter and Relic Density

If dark matter candidates were in thermal and chemical equilibrium in the early Universe, they
underwent decoupling from the universal plasma when the interaction rates became less than
the expansion rate of the Universe, leading to a constant comoving density for such particles. In
this context, Weakly Interacting Massive Particles (WIMPs) emerge as interesting dark matter
candidates. The annihilation cross-section, deduced from experimental assessments of dark
matter abundance (relic density), aligns with the expected range for weak interaction cross-
sections.

WIMPs, once in chemical and thermal equilibrium at sufficiently high temperatures in the
early Universe, were thermally produced through collisions in the thermal cosmic plasma. This
occurred when they were generated in particle-antiparticle pairs. Subsequently, these particle-
antiparticle pairs could annihilate, forming Standard Model particles in a reverse reaction. Ini-
tially, these two processes were in equilibrium, denoting the dark matter particle as x and its

number density as n, , resulting in n, —n, = 0.
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Expressing the number density of such particles in terms of the Boltzmann distribution

function for temperatures 7'and mass m, :

m. T 3/2
n, — i, ~ ( 5 ) e /T (2.143)
™

As the annihilation rate drops just below the expansion rate, the number of these particles in
a comoving volume stabilizes. This phase, termed “freeze-out”, results in the particles lingering
as relics, with the temperature at which this occurs known as the “freeze-out temperature” for
that particle species. The relic density subsequent to freeze-out is dependent on the annihilation
cross-section.

In the calculation of relic densities for thermally produced DM candidates, the Boltzmann
equation needs to be solved:

ddntx = —3Hn, — (ov) (ni — (nx)zq) , (2.144)
where H denotes the Hubble constant, and (ov) represents the thermally averaged product of the
annihilation cross-section and the relative velocity between the DM particles. This parameter
serves as a bridge between Cosmology and Particle Physics, dictating the DM density post
freeze-out. Once the Boltzmann equation is solved, the estimated DM density can be expressed
as[19]:
. 3x107*" [ em?® 57

Q.h?~ &) : (2.145)

The measured value for this quantity is Qxh2 = 0.11425 + 0.00311[50]. This equation provides
a means to test the WIMP hypothesis for a given DM particle candidate.

Current observations strongly indicate that dark matter is cold. Consequently, relativistic
particles cannot account for the DM abundance within the present cosmological framework.
Even if we disregard the relativistic nature of neutrinos, the neutrino relic density remains
significantly lower than the DM relic density. Hence, the abundance of dark matter in the

universe cannot be justified by the Standard Model.
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Massive neutrinos
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The recognition of neutrinos dates back to the 1956 Cowan-Reines neutrino experiment[51].
As stated in the last chapter, neutrinos remain massless in the SM even after the spontaneous
symmetry breaking. In the present day, we identify three distinct types of neutrinos, all elec-
trically neutral and exclusively interacting through the weak force. This chapter delves into
the intriguing realm of neutrino masses. Despite being predicted to be at least six orders of
magnitude smaller than the next lightest standard model fermion, experimental evidence has
unequivocally demonstrated that neutrinos possess tiny but non-zero masses.

The first section of this chapter elucidates the theoretical underpinnings of neutrinos, shed-
ding light on the experiments that have substantiated their minute yet non-negligible masses. We
explore various mechanisms proposed to account for the origin of neutrino masses, recognizing
that their massiveness necessitates physics beyond the Standard Model (BSM).

In the subsequent section, we introduce an extension to the Standard Model that not only

accommodates neutrino masses but also posits a candidate for dark matter.

3.1 Introduction to neutrino masses

We begin this section with some basic theory about fermions to introduce the concept of chirality,
needed to approach the discussion of whether neutrinos are Dirac or Majorana particles. We
continue this section with the concept of neutrino oscillation, which requires neutrinos to be
massive and that their masses are non-degenerate. Afterwards, the most popular mechanisms

for neutrino mass generation are presented.

3.1.1 Chirality and fermions

The Dirac equation is a relativistic wave equation that describes the behavior of fermionic

particles with spin-1/2, such as electrons. It is given by:
(iv*0,, —m)y =0, (3.1)

where the v* are the 4 X 4 gamma matrices, namely a Dirac representation of the Clifford algebra

{47} =29 (3.2)

In the Weyl (or chiral) representation, the gamma matrices take the following form:

70:<1 ]1)) Vi:(_ogi %z) (3.3)



The Dirac matrices can also be expressed in an alternative form as:

= ( gu g“ ) . (3.4)

The Dirac equation is Lorentz invariant, and if ¢ satisfies the Dirac equation, it automati-
cally satisfies the Klein-Gordon equation, which is a relativistic wave equation describing spin-0

particles:

(i’yua,u, + m) (Z’yuaz/ - m)¢ = <7’yu’yyalu,8y + m2 - Y’m(r}/“au + ,yllay) - m2> ¢
1 1
= (-3 0" 0,0, - 5 b0.0, —m? ) v (35)
= —(9,0" +m?) ¢ =0.

The Dirac adjoint, denoted as 1), is a useful construct in combining spinors to form Lorentz
invariant quantities. It is defined as the Hermitian conjugate of the Dirac spinor ¢ multiplied
by the gamma matrix 7°:

Y=yl (3.6)

Using the Dirac adjoint, we can construct various Lorentz invariant quantities, such as ¥y*,
PpHap¥e), and @é%w. These expressions remain invariant under Lorentz transformations due to

the proper combination of Dirac spinors and gamma matrices. The Dirac Lagrangian, given by

£ =1 ("9, —m), (3.7)

leads directly to the Dirac equation when the Euler-Lagrange equation is applied. The general
solution to the Dirac equation is a complex 4-vector transforming under the spin representation
of the Lorentz group. However, this solution is not irreducible.
The gamma matrix +° is defined as:

01,23

. i
P =RV = = 5T Ve (3.8)

where €#777 is the completely antisymmetric tensor with €923 =

=5 1) 3.9)

and it satisfies several important properties:

—€g123- In the chiral represen-

tation, 7° is diagonal:

e Hermiticity: (75)T =",
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o Idempotency: (75)2 =1,
o Anti-commutation with gamma matrices: {7°,v*} = 0.

The matrix 7° is known as the chiral or helicity projection operator because it projects the
Dirac spinor into its left-handed and right-handed components. To show this, we introduce the
projectors

Pon=51F7). (3.10)

They satisfy Pi r = Ppp and P Pp = 0. When acting with these projectors on the Dirac

spinor 1, we obtain its left-handed and right-handed components:

Yy, = Pr, g = Pgi, (3-11)

with ¢ = ¢, + 1. These left-handed and right-handed components are known as Weyl spinors,
often referred to as the chiral components. Using the chiral components, we can express the

Lagrangian the form:

L= Z@’Y“auw - me = Z.@L’}/Mauq/}L + iRPYHa,u,d)R - @Lmqu - @Rmd)L‘ (312)
From the Lagrangian, we can derive the field equations for the chiral components:

i’YMBT/JR =miyy,

(3.13)
it o, = mip,.

If we set m = 0, the space-time evolutions of the Weyl spinors ¢ and ¢, decouple, yielding

the Weyl equations:
ivh oy, = 0,

Since the field equations for ¢ and v; are now decoupled, it is possible that one of the two

(3.14)

chiral fields is sufficient to describe a massless fermion.
All known matter particles in the SM are known to be Dirac fermions, except for neutrinos,
which could be Majorana particles. To understand the difference between Dirac and Majorana
fermions, we need to introduce the charge conjugation operator, denoted by C, which satisfies
the relations[52]:

Ct=CT=C"1=-C, CyC=—(y)T. (3.15)
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The charge-conjugated field 1/¢ is defined as ¢ = C4T. We note that the action of C' on a Weyl
fermion flips its chirality: (¢;)¢ = (¢°)g. This means that the antiparticle of a left-handed
particle is right-handed and vice-versa.

We now define the Majorana spinor, which satisfies the Majorana condition:

We = O = . (3.16)

Due to the action of C that inverts all charge-like quantum numbers, Majorana fermions must
carry zero charge. It can be shown that a Majorana fermion can be written as the sum of a Weyl
fermion and its complex conjugate. Consequently, the Majorana mass term takes the following

form:

—@erbR — @Rmd}L = —@Lmﬁi + h.c. (3.17)

Here, h.c. denotes the Hermitian conjugate. Furthermore, it is possible to rewrite the Dirac

mass terms in the following manner:

[(we)] Cm¥, +¥TCmT (¥9), ] + he. (3.18)

— — 1

This rewriting reveals that a Dirac fermion can be viewed as a combination of two Majorana
fermions with the same mass but opposite CP parity, a phenomenon known as maximal mix-
ing. However, introducing Majorana masses for neutrinos within the framework of the Standard
Model (SM) is not straightforward. An SU(2); transformation of ¢, would not preserve the La-
grangian mass term. Accomplishing this requires the introduction of something akin to the Higgs
mechanism or an effective operator. Unfortunately, none of these options can be implemented
within the SM without violating gauge invariance, Lorentz invariance, or renormalizability. Con-
sequently, it is not possible to consistently introduce neutrino mass terms within the rules of the
SM.

3.1.2 Neutrino oscillations

While the Standard Model initially portrayed neutrinos as massless particles, the notion that
massive neutrinos could exhibit flavor-changing properties was postulated by Pontecorvo in
1957[53, 54]. At that time, only one type of neutrino was known, but the subsequent discovery
of a second type of neutrino[55] fueled the development of theories describing neutrino mixing
between different flavor eigenstates[56, 57].

The experimental landscape took a significant turn with the advent of neutrino oscillation

experiments, providing compelling evidence for non-zero neutrino masses. The first inkling of
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this came in 1968 with the detection of solar neutrinos[58]. The subsequent discovery of the tau
neutrino in 2000[59] and the pivotal data from Super-Kamiokande[5] and SNO[15] conclusively

established that neutrinos can change their flavor during propagation.

Neutrinos are primarily produced through charged-current weak interactions, yielding weak-

eigenstate neutrinos (v,, Vi

in this basis. Consequently, the mass eigenstate neutrinos (v;, v5, and v5) may differ from the

or v_). However, the neutrino mass matrix is not generally diagonal

flavor eigenstates, setting the stage for flavor oscillations over time. therefore, the probability of
finding a neutrino created in a certain flavour state to be in the same or other state will oscillate

with time.

We consider first the case of Dirac neutrino mass term. In this case, the part of the La-

grangian thar describes lepton masses and charged current interactions can be written as

_’CWer = %ELVMVLWH_ + mléLeR + mDDLl/R + h.C., (319)
where we have used the flavour eigenstate fields. We note that the individual lepton flavours are
not conserved when the Dirac neutrino mass term is present, but the total lepton number L is.
In general, the mass matrices m; and mp, are complex, anc can be diagonalized via bi-unitary

transformations. We write
/ /7 /7
€L:V26L, eR:VReR, I/L:ULVL, VR:URVR7 (320)

where the matrices V;,, Vi, U, and Uy are chosen so that they diagonalize the mass matrices of
the charged leptons and neutrinos. To keep the notation simple, we will omit the primes when
changing to the Dirac mass eigenstates e; = e, + e,z and v; = v, + ;5. The Lagrangian then
takes the form

—L Wi = %é’y“VLTULVLWM_ +myerer + mpv vy + he., (3.21)
where now m; and m, represent the charged lepton masses and neutrino masses, respectively.
The matrix that relates neutrino flavour states and mass states is called Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) matrix: U = VLT U;. The relationship between neutrino flavour

eigenstates |v;) produced or absorbed alongside with the corresponding charged lepton, to the

mass eigenstates v, has the form:

vi) = > Usilve), (3.22)
k
where i € e, i, 7 denotes the neutrino flavour, v, are the neutrino mass eigenstates, and the U;;,
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is is an element of the unitary PMNS matrix. The matrix U satisfies the unitary conditions:

wut), Z wiUfi = bag,  (UTU), Z ;- (3.23)

The PMNS matrix, in the Particle Data Group (PDG) convention, is given by:

—id

€12€13 5 $12€13 5 513€ vy o
7 7 H 15 1—5=
512023 — 012523513?6 C12C23 — 5129235136 5 523€13 x diag (17 e z,e 2 ) , (3.24)
K2 X2
$12823 — C12€23513€ —C12823 — S12C235813€ C23C13

where ¢;; and s;; are the cosine and sine of the mixing angle between the i-th flavour eigenstate
and j-th mass elgenstates, respectively. The symbol § represents the Dirac CP-violating phase,
and oy, and a4, are the Majorana CP-violating phases. Let us consider an initial state produced
at t = 0 by some charged current (CC) process involving a neutrino with flavor state «. The

evolution operator describes the state at a time t as follows:

= Uspe Pt =) Unpe Py Ugylig). (3.25)
k k «

The probability of the neutrino flavor transition v, — v is given by:

2
P(vo = vg,t) =[{vs | va ZU WUpne™ P =D (Jag), e "B (3.26)

kj
where we have defined the self-adjoint matrix <Ja5)kj = UnUsUs;Ug;. The factor Uy, is
interpreted as the amplitude of transformation of the initial flavour eigenstate neutrino v, into
a mass eigenstate one v,. The factor Uy, converts the time-evolved mass eigenstate v, into the

flavour eigenstate v4. In the ultra-relativistic limit, we can approximate the energy eigenvalues

E, as
m2

E,.~F 3.27
k Y E (3.27)

Inserting this approximation into equation (3.26) yields:

Am? L

Py, —»vgt) =Y (J I 3.28
(Voz Vﬁ? ) kzj( aﬁ) eXp( 2F )7 ( )

2 2

where L = ct is the distance between the neutrino source and the detector, and Am?k = mj—mj,

is the squared mass difference between the neutrino mass eigenstates.

The case for Majorana neutrinos is analogous, the difference is that the term mpv; vy +h.c.
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needs to be replaced by m ;U7 vy + h.c. But in this case, not only the individual lepton flavour
is broken, but also the total lepton number. The structure of the charged current interactions
turns out to be the same as in the case of Dirac neutrinos. Therefore, the oscillation probabilities
in the case of the Majorana mass term are the same as in the case of the Dirac mass term. This
means that we cannot distinguish between Dirac and Majorana neutrinos by observing neutrino
oscillations. The situation changes when the neutrino mass term is of the Dirac+Majorana form.
In this case, again, total lepton number conservation is violated by the Majorana mass term.
Unlike the previous cases, we can have a new type of neutrino oscillation: oscillation between
sterile states v, — 1} can also occur. In principle, this case can be distinguished from the pure

Dirac and Majorana cases in neutrino oscillations experiments[60].

In order to observe neutrino oscillations, it is necessary to have a non-degenerate mass spec-
trum, which implies Am?k # 0, and a non-trivial flavor mixing matrix, denoted by U # 1.
Today there is a strong body of evidence of neutrino oscillations from a variety of experiments.
However, neutrino oscillation experiments are sensitive to the difference between squared neu-
trino masses only, and thus are insensitive to the absolute neutrino mass scale. Today, the
square mass difference Am32, is known and is positive, yielding m, > m;, but nothing has been
discovered yet about the sign of Am32,. This leads to two mass schemes, named the normal

ordering (NO): m; < m, < mg, and the inverted ordering (10): ms < my < ms.

The absolute neutrino mass scale can be probed by neutrinoless double-beta decay (0v35)[61]
laboratory experiments. Ov3/ decay is a process where two neutrons beta-decay simultaneously
without emitting any neutrinos or antineutrinos. This process violates lepton number by two
units. Therefore, neutrinos must be Majorana in order to induce Ov/3/3 decay[62]. If the neutrinos
are Dirac, then this process will be absent and the Majorana phases in the PMNS matrix
are non-physical and can be set to zero. In addition, observation of this process would also
provide invaluable information about the dominance of matter over antimatter in the Universe,
because two matter particles (electrons) are emitted in the decay without the balance of the

corresponding antiparticles[63].

We discuss briefly the consequences of C'P, T'and C PT symmetries for neutrino oscillations.
Note that charge conjugation operation C' is not well defined for neutrinos, as it would convert
a left handed neutrino into a non-existent left handed antineutrino. On the contrary, C'Pis well
defined: it converts a left handed neutrino v; into a right handed antineutrino. C'Pis essentially
particle-antiparticle conjugation. If C'P is conserved, the probabilities of oscillations between

particles and their antiparticles coincide:
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The action of particle-antiparticle conjugation on the matrix U amounts to U — U”*, which
means that C'P is only conserved in the leptonic sector if the matrix U is real or can be made
real by a rephasing of the lepton fields. A unitary n x n matrix depends on n(n — 1)/2 angles
and n(n + 1)/2 phases. In the Dirac case, 2n — 1 phases can be removed by proper rephasing
of the left fields, which leaves (n — 1)(n — 2)/2 physical phases. Therefore, in the Dirac case,
C'P non-conservation is only possible for n > generations. In the Majorana case, only n phases
can be removed, leaving n(n — 1)/2 physical phases. The Majorana mass phases do not lead to

observable effects for neutrino oscillations[64].

CPT transformation can be considered as a combined action of C'P and time reversal, which
interchanges the initial and final states. Under C PT, the oscillation probability P(I/a — Vg, t)
goes into P(Dﬁ —v,, t). But under CPT, U — U* and t — —t, which transforms the oscillation
amplitude into its complex conjugate. Thus, oscillation probabilities under C'PT are invariant
with respect to C PT:

P (v, = vg,t) = P(U5 = T, t). (3.30)

From CPT invariance, it follows that C'P conservation is equivalent to T conservation. If C'P is
not conserved, oscillation probabilities are different for neutrinos from those for antineutrinos.
This is possible if the matrix U is complex, i.e. it has unremovable phases. For three generations
there is only one such phase 9, so there should be only one C'P-odd oscillation asymmetry.

Denoting the C'P-odd asymmetry as
AP,5=P(v, — vs,t) — P(v, — Us,t). (3.31)
From CPT invariance we obtain APaﬁ = —APBQ. Using eq. 3.24, we can write

— _ _ 2 -
AP,, = AP, = AP, =4815013513C13523C23 SIN 0

. Am%2 . Amgg . Am%l (3.32)
X {sm( Yo t) +81n( Yo t) + sin <2Et)] .

This expression vanishes for § = 0. It also vanishes if any of the mixing angles 6,5, 6,5 or 043

is 0° or 90°. Since the mass squared differences satisfy Am?, + Am3; + Am2, = 0, the CP-odd
asymmetry vanishes if even one of Amfj is zero. The experimental observation of C' P violation
in neutrino oscillations is a very difficult task. The C'P-odd probability asymmetry is suppressed
if any one of the three lepton mixing angles is small, which is the case for 6,5. Current neutrino
parameters do not exclude the possibility of observation of C P violation effects in future neutrino

experiments.
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3.1.3 Neutrinos masses in the Standard Model

Remembering the development of chapter 2, in the SM all quarks and charged fermions get their
masses through the Yukawa couplings with the Higgs field:

Lyux = _[_’LHyeeR - Q_LHyddR - QLﬁyuuR + h.c. (3.33)

After electroweak symmetry breaking, the Higgs acquires a vev (H) = v/v/2, and the Yukawa

terms yield the mass matrices

v
Me =Ye— 1=

v v
\/i, Md :ydE’ Mu :yuﬁ (334)

In general, different types of mass terms can be built for fermions. Considering a set of fermions
¥, with ¢ € {1,2,...,n}, we can write the mass terms with a n x n matrix. Fermions have a

Dirac mass term:
Lp==Y 0 .MPy) +he, (3.35)
4,9

where we have both left and right components of fermions. Right-handed neutrinos can be
added to the SM particle content, producing the gauge-invariant, renormalizable Yukawa term
yyfﬁ vi +h.c., but to accommodate the O(0.1) eV neutrino mass scale, the yukawa coupling y,,
would be of the order of 107!3. Therefore, with this model, one needs a set of tiny dimensionless
parameters, which are six or seven orders of magnitude smaller than the next smallest Yukawa

coupling constant.

The Majorana mass term can be built using the charge conjugated field, in which case the

Majorana mass term has the form
1 —i ic
Ly=—5 > iy MMy +hee., (3.36)
i7j

where we note that the mass term can be built for right handed neutrinos in an analogous way.

Both Majorana and Dirac mass terms can coexist in the Lagrangian.

Neutrinos are massless in the context of the SM. Therefore, we cannot have Dirac masses
since there are no right-handed neutrinos v in the Standard Model. The reason why neutrinos
cannot have Majorana masses in the SM is more subtle. The Majorana mass term for neutrinos
should be of the form 7; 7. v; has weak isospin projection I5 = 1/2, and the Majorana mass
term has I3 = 1, meaning that it is a component of the isotriplet operator LT CitytL; ~ (3,—2).

To introduce the Majorana mass in a gauge invariant way to preserve the renormalizability of
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the standard model, we would need an isotriplet Higgs field A ~ (3,2). If one introduces
the previous field in the Lagrangian, its electrically neutral component would develop a VEV,
causing that a Majorana neutrino mass is generated. However, such field does not exist in the
standard model. It is possible to build a composite triplet Higgs operator out of two Higgs

doublets, which is the matter of the following section.

3.1.4 Dimension-5 Weinberg operator

Following the discussion of the preceding section, we identify that the operator H%it,7H pos-
sesses the correct quantum numbers required for constructing the triplet Higgs operator. The
term (LY CiryrL;)(HTiT,7H) has dimension 5, preventing its entry into the Lagrangian of a
renormalizable model at the fundamental level. However, it could be introduced as an effective
operator at a higher loop level.

In the context of treating the Standard Model as an effective field theory, one assumes the
adherence of the SM gauge symmetry Ggy = SU(3), x SU(2); x U(1)y, with the fields heavier
than the EWSB scale having neglected dynamics. Within this framework, certain heavy BSM
fields may mediate interactions absent in the SM alone, provided each interaction is Lorentz
invariant and upholds the gauge symmetry Ggy;. This consideration necessitates the inclusion
of higher-dimensional, non-renormalizable operators. One such term, introduced by Weinberg
in 1979, stands out as a unique dimension-five operator capable of generating Majorana neu-
trino masses[65]. This operator, known as the “dimension-5 Weinberg operator” is the lowest-
dimensional, non-renormalizable operator built from standard model fields that is invariant
under Ggy;. It can be succinctly represented as:

Oy = %ICHHL, (3.37)
where A denotes an effective scale, C represents a dimensionless coefficient, and L and H refer
to the lepton and Higgs isodoublets, respectively. In this representation, we have omitted the
contraction of Lorentz indices as well as SU(2) indices.

Within the SM, both lepton and baryon numbers are conserved at the perturbative level,
owing to the accidental symmetries inherent in the Lagrangian. These symmetries emerge as
direct consequences of the particle content, gauge invariance, renormalizability, and Lorentz
invariance of the model. The Weinberg operator, being a dimension-5 operator, introduces a
violation of lepton number conservation. This violation is considered effective and is expected to
be suppressed by the scale A at which lepton number symmetry breaks down. Such a description

provides an effective theory that encompasses various underlying models. Following spontaneous
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symmetry breaking, when the Higgs field acquires a non-zero vacuum expectation value (H) =

v/ \@, neutrinos gain Majorana masses, expressed as:
m = —uv°. (3.38)

In the scenario where the scale of new physics, A, is large, the neutrino mass naturally becomes
small, leading to the seesaw mechanism. Given that terms in the Lagrangian with a dimension
larger than five are non-renormalizable, the Weinberg operator is considered effective at energies
beyond the scale of A.

The Weinberg operator can be generalized to the set
O’ ~LLHH(HTH)", (3.39)
where the number of primes equals n. In this case, one obtains a more powerful suppression
m ~ ve2" 1 (3.40)

as n increases. If one wants to derive, from an underlying renormalizable or UV complete theory,
one of the Weinberg-type operators as the leading contributions to neutrino mass, the operator
needs to be “opened up”. Depending on which operator dominates and how it is opened up, one

determines the type of theory is obtained. Some possible choices are[(6]:

[u—y

. Open up Oy, at tree-level using only exotic massive fermions and scalars as the new physics.
2. Open up Oy, at j-loop level using heavy exotics only.

3. Open upOyy, at j-loop level using both light SM particles and heavy exotics.

4. Open up O at tree-level using heavy exotics only.

5. Open up O’ at j-loop level using heavy exotics only.

6. Open up Oy at j-loop level using both light SM particles and heavy exotics.

The first option gives rise to the three distinct types of seesaw mechanisms. These mechanisms
are explored further in the following section. The other scenarios lead to different kinds of
radiative models. We will study one of such models known as the scotogenic in a subsequent

section
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3.1.5 The seesaw mechanisms

All Majorana neutrino mass models ultimately reduce to the Weinberg operator or equivalent
formulations. There are only three established mechanisms for generating this operator at the
tree level, and they collectively fall under the widely recognized category of seesaw mechanisms.
The seesaw mechanisms operate on the principle of inducing the operator Oy, by exchanging
heavy particles. To implement the seesaw mechanism, we extend the Standard Model by intro-
ducing the right-handed neutrino vy, which is a singlet with respect to all SM gauge groups.
Being electroweak singlets, right-handed neutrinos can possess Majorana mass terms that are in-
variant under SU(2); x U(1)y~. Additionally, they do not contribute to the electroweak anomaly,
and their number is not constrained by the requirement of anomaly cancellation. The quantity
of right-handed neutrinos is not bound to coincide with the number of generations in the SM.
However, there are astrophysical and cosmological constraints on their number, which depend

on their masses and mixing parameters[(67, 68].

Majorana mass terms for vy are allowed without any restrictions. However, for the left-
handed neutrinos, Majorana mass terms will remain forbidden since they violate gauge invari-
ance. For simplicity, we consider only one neutrino generation. The corresponding Lagrangian
has the form[69]:

£D+M _ 1 = 4,C 1 —C - h
= —oMLPLVE = gMRVRVR — MpVLVR +h.c, (3.41)
where, m;, mp, and mp are real parameters. In this case, we can group the Dirac and Majorana

mass terms in a mass matrix, giving the Lagrangian the following form:

1
LPHM — —gﬁLMD“V[(nL)C + h.c., (3.42)

where
D+M _ ( Mp Mp _ vy
M = ( - ), n; = ( (VR)C ) . (3.43)

The mass matrix MP+M indicates that there exists a mixing, but this matrix can be diagonal-
ized, leading to separate mass eigenstates that do not mix. We diagonalize the matrix with a
transformation UTMP™™MU = m, where U is an orthogonal matrix, from which we obtain the
mixing angle, given by:

2mp

tan 26 = (3.44)

mgr —my,

The masses of the physical fields are therefore the eigenvalues of MP+M_ These eigenvalues are
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given by:

my o = % (mp +mpg)F %\/4”% + (mp —myp)?. (3.45)
Considering the mixing, the seesaw mechanism can be introduced in the SM to explain the
neutrino mass generation. In the SM, there is no left-handed Majorana mass term, since a
left-handed Majorana term would violate gauge charges, so we can assume m; = 0 to respect
unbroken symmetries. The right-handed neutrinos are gauge singlets, and we can introduce their
Majorana mass term without further problems. The Dirac component comes from a standard
Yukawa interaction. Lepton number is violated at a scale much larger than the electroweak
scale, which implies mp > mp, which is the main assumption in the seesaw mechanism. Under

these assumptions, the eigenvalues take the form:

2
my = _%7 My =~ Mp. (3.46)

The relation between the physical and the original states is given by

. mp
Vi =W + — Vs,
mp
. (3.47)
(vr)" = —i—Lvy + vy
mpg

In this simplified case, we note that active neutrinos acquire naturally small masses suppressed

by mp, which could be arbitrarily large.
We now consider the general case of n generations. Now, the Dirac and Majorana seesaw

w5 ()

This matrix can be diagonalized with a 2n x 2n unitary matrix V such that VMV = m. The

matrix has the form:

matrix V can be of the form:
v 1. 7 VIV =1+0(p?) (3.49)
- _pT 1 ) - P ’ .
where its elements are n x n matrices, and p is treated as a perturbation. For simplicity, we

can neglect possible C'P violation in the leptonic sector, and consider mp and My to be real

matrices. The matrix p can also be taken as real. Considering the previous assumptions, upon
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block-diagonalization of the matrix M, the matrix m takes the form:

N —mpMzgtmE 0
m o~ < 0 My ) (3.50)

As a result, we observe that the left-handed Majorana matrix is given by:
my, =—mpMg'mk. (3.51)

The diagonalization of the effective mass matrix m; yields n light Majorana neutrinos, com-
posed primarily by the active neutrinos v, with a very small contribution of the sterile neutrinos
vp. On the other hand, diagonalization of My produces n heavy Majorana neutrinos which are
mainly composed of vy. This tells us that the heavier vy is, the lighter v; will be. The masses
of active neutrinos are of the order of m2,/Mp. The case we just considered is known as Type-I
seesaw mechanism[70]. This mechanism is illustrated in Fig. 3.1a. Interestingly, considering the
largest Dirac mass eigenvalue of the order of the electroweak scale, around 200 GeV, and the
right handed scale as My ~ 10'®> GeV, one obtains the mass of the heaviest light neutrino m,, to
be around (1072 —1071) eV, which is of the same order of magnitude for the neutrino oscillation

solution of the atmospheric neutrino anomaly[71].

The Type III seesaw mechanism|[72] is analogous to the Type I seesaw, but it involves the
introduction of an SU(2) triplet fermion 3 with hypercharge zero, instead of the right-handed
neutrino vp. The diagram corresponding to the Type III seesaw is shown in Fig. 3.1c. In this
scenario, the electrically neutral component of ¥ can be regarded as the right-handed neutrino.
It can possess a Majorana mass, and when combined with the left-handed neutrino, it allows for

a Dirac mass term.

On the other hand, the Type II seesaw mechanism[73, 74] involves the inclusion of a scalar
SU(2) triplet (A) with hypercharge 1 to the Standard Model. In this case, there is no additional
fermion introduced for the neutrino to mix with, leading to the absence of a Dirac mass term.
This model is the unique theory obtained from Yukawa coupling the fermion bilinear LL to A
which in turn couples to HTHT, a cubic interaction term in the scalar potential. In this case,
the The seesaw effect is obtained upon requiring a positive quadratic term for the triplet in
the scalar potential, that on its own would cause the triplet’s VEV to vanish, but which in
combination with the cubic term induces a small VEV. Its corresponding diagram is shown in

Fig. 3.1D.
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Figure 3.1: Seesaw mechanisms diagrams.

The three seesaw mechanisms discussed represent the simplest realizations of neutrino Ma-
jorana masses with an extension of the SM that involves the addition of a single BSM field. In
the tree level seesaws, the neutrino mass scale is roughly given by p, = (H)/A, with (H) the
VEV of the Higgs.

3.2 The scotogenic model

As discussed earlier in this chapter, the minimal introduction of sterile neutrinos into the SM
would necessitate extremely small Yukawa couplings. While this scenario is theoretically pos-
sible, it has proven unsatisfactory to many researchers. The observed tiny neutrino masses
strongly suggest an alternative mechanism for neutrino mass generation that can rationally ac-
count for their small values. This has led to the development of numerous models explaining
Majorana masses, with fewer addressing Dirac masses. In this section, we delve into the sco-
togenic model, a foundational framework that has inspired many models explaining both tiny
Majorana and Dirac neutrino masses.

The scotogenic model, initially proposed by Ernest Ma in 2006[21], offers an intriguing
framework where particles responsible for generating neutrino masses also serve as potential dark
matter candidates. This model employs a one-loop mechanism for neutrino mass generation,
utilizing interactions between the dark sector and neutrinos to induce small neutrino masses.

Constituting a minimal extension of the Standard Model, the scotogenic model introduces three
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neutral fermions NV, 5 3 and a single SU(2) doublet n = (n*,nO)T. Both N, and 7 are odd
under an additional Z, symmetry. The inclusion of this symmetry ensures that the n doublet
cannot acquire a nonzero VEV, making it a suitable candidate for dark matter. Simultaneously,
it prevents the existence of tree-level neutrino masses, preserving the viability of neutrinos as
massless particles at the tree level. However, a loop-level Majorana mass for neutrinos can still
arise within the scotogenic model due to the interactions of the dark sector with neutrinos.

The additional terms in the Lagrangian responsible for neutrino mass in the scotogenic model
are given by:

_ 1

L= g (HUH) (') + Ay () (' H) + 3 [(etn)* + (at 1)) (3.53)

where all \; can be chosen to be real without any loss of generality. After ¢° acquires a nonzero

VEV (v) and using n° = ng + in;, the A5 term can be expressed as:

1

5751’2 (77%2 - 77%) . (3.54)

This particular term induces a mass splitting between the real (nz) and imaginary (n;) compo-
nents of the dark scalar doublet, leading to distinct masses for these two states. The diagram

of the radiative generation of neutrino mass, is shown in Fig. 3.2

(n%) (h%)

Figure 3.2: One-loop generation of neutrino mass.

The scotogenic mass term for the previous diagram is given by the integral of the form[75]:

o hahge [ dYk m 1 _ 1
=S [ i) | e e e

zkhak mp —mj
-y [ ) | 5|

k - mN ) (k% —m3,) (k2 —m7

(3.55)

To evaluate this integral, we utilize a generalization of Feynman’s formula for n propagators|70]
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(labeled A,)), each repeated m, times in the denominator:

1 ! Iz INOIY I
= dzy ...dz,0 —1 L v . 3.56
AT AT AT / Ty (Z i ) (> xiAi)Emi I'(ml)..T (m,) (3:56)

0
Using this formula, the integral can be expressed as follows:

ihiyghj, (my —m3?) [ d'k
Iy=> —** QR : /(27r) (£ muy, ) x

k

[/dxdydz S(z+y+z—1)I(3)
(kQ—m?vk) +y (k2 —m3) + 2 (k2 —m3)]”

ihighy, (M3 —m3) [ dik
_Z kN 1)/(27T) (F+my, ) x

(3.57)

1 11—z F(g)
dx dy
/o /o [x((k:Q—m?\,k>)+y(k2—m%)+(1—x—y) (k2—m§)]3

Next, we rewrite the denominator as A = x(m?vk —m3) + y(m% —m3) + m?, resulting in the

expression:

Y d*k k+my
L. =Y ihyh; (m% —m? / dw/ d / . 3.58
7 Z k gk( R I) A A Y (271’)4 (k2 _A)s ( )

k
As a next step, the integral over k is shown to vanish due to symmetry. By using a Wick rotation

(ko = ily so that k? — —[?) the integral over k can be performed in a four-dimensional spherical

space, leading to:

=3 hishjemy, (mp —m37) 1 dw e 13dldS)
9y (271') Yy 3

k A ( )

_ Z hlkhjkmN mR m?) /1 /1 e / 27m213dl

2 0 0

3(1+ %)
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Taking different mass limits for mpg, m;, and My , this formula can produce both a seesaw and
an inverse seesaw-like relation between the mass of My and that of the neutrino masses. In

the following chapter, we will further develop an extension to the scotogenic model.

3.2.1 Additional radiative schemes for neutrino masses

As was mentioned in sec. 3.1.4, there are possible radiative neutrino mass models which derive
from the Weinberg operator and adopt the number of loops as the primary consideration. At
j-loop order, neutrino masses are typically given by

1 \7?

for the Oy associated options 2 and 3 previously introduced. For the Oy, cases of options 5 and

6, are typically given by

1 It
mVNC<167T2) = (3.61)

where v = v/2(H) ~ 100 GeV. All coupling constants, and for some models also certain mass-

scale ratios, are absorbed in the dimensionless coefficient C.

Most of the radiative neutrino mass models generate neutrino mass at 1, 2 and 3-loop level.
In [77] 12 topologies were identified which contribute to neutrino mass. Some of the topologies
cannot be realized in a renormalizable theory or require counter-terms to absorb divergences.
There are six topologies which generate neutrino mass via a 1-loop diagram, which we label as
T1-i, T1-ii, T1-iii, T3, T4-2-i and T4-3-i, depicted in Fig. 3.3:
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Figure 3.3: Feynman diagram topologies for 1-loop radiative neutrino mass generation with the Wein-
berg operator.

These are also called the UV completions of the Weinberg operator at 1-loop. Depending on
the particle content, the topologies do not rely on any additional symmetry. The topology T3
is the only one with a quartic scalar interaction. The scotogenic model was its first realization.
Several variants of the scotogenic model have been proposed in the literature, which include the
addition of new fermions, additional scalars, higher SU(2) representations, extended discrete
symmetries, etc[78-83]. Many other models have been built using other topologies to generate
neutrino masses. For example, in the reference [34] a topology T'1 — ¢ was used. Among the
models based on the topology T1-ii, there are four possible operators which models are based
on. The topology T1-iii appears in the sypersymmetrized version of the scotogenic model[85].

Models with additional scalar fields contribute to neutrino mass via their vacuum expectation
value in contrast to being a propagating degree of freedom in the loop. In the following chapter
we introduce a variant of the scotogenic model with additional VEV insertions. Our model

extends the symmetry sector with a gauged U(1); symmetry.

57



58



An Extension of the Scotogenic

Model with Gauged Lepton Number

Contents

4.1 Gauged Lepton num 0 61

59



60



In the preceding chapter, we delved into the Scotogenic model, an elegant framework rep-
resenting the simplest model of radiative neutrino masses. This model not only unifies the
generation of SM neutrino masses with dark matter but also introduces intriguing features. In
this chapter, we extend the Scotogenic model by elevating lepton number conservation to the

status of an U(1); gauge symmetry spontaneously broken by three units.

The Scotogenic model incorporates a second SU(2) scalar doublet 1 and at least two right-
handed neutrinos N;, all transforming with odd parity under an exact Z, symmetry. This
symmetry serves a dual purpose: ensuring the stability of the lightest Z,-odd state, a potential
dark matter candidate if electrically neutral, and preventing the 1 doublet from acquiring a non-
zero VEV, thereby avoiding tree-level neutrino masses. However, justifying the theoretical basis

for this Z, symmetry imposition is not straightforward, as higher Z, symmetries could play a

n
similar role. Additionally, theoretical arguments suggest that discrete symmetries should have
a dynamical origin[36], such as a global U(1) symmetry, preventing issues like the formation of

domain walls[87].

The Scotogenic model has undergone various extensions[38-90], all leveraging the involve-
ment of new particles from the dark sector within loops to induce neutrino masses. Extensions
encompass scenarios where the dark matter symmetry aligns with a U(1) gauge symmetry[91] or
originates from lepton number conservation[92]. Additionally, extensions have explored SU(5)
gauge interactions[93], SU(5) unification[94], the inverse seesaw mechanism[95], and the origin

of lighter generations of lepton and quark masses[96].

Motivated by the non-observation of neutrinoless double beta decay and the conservation of
total lepton number as a robust symmetry in nature, we introduce an extension of the Scotogenic
model. This extension elevates lepton number to the status of an U(1); gauge symmetry, which
is spontaneously broken by three units. Consequently, a new set of leptons with appropriate

quantum numbers is introduced to cancel anomalies in the model.

4.1 Gauged Lepton number

In the minimal Standard Model, both baryon number (B) and lepton number (L) emerge as
accidental global symmetries. However, as demonstrated in Chapter 2, these symmetries are
anomalous in the SM, necessitating specific conditions for the gauging of either symmetry. No-
tably, B — L can be gauged by introducing a singlet right-handed neutrino (vp) per family.

When allowing B and L to vary among different families, the requirement for an anomaly-free
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U(1)x gauge symmetry is expressed as[97]:

3
i—1

(2

where n; and n; denote the U(1) y values for each quark and lepton family.

The independent gauging of B and L[98] becomes feasible with the introduction of new
fermions. Given that vg is a novel addition, its assignment under U(1); is not constrained
to match that of v;, which must align with charged leptons. This introduces the interesting
possibility that neutrinos naturally emerge as light Dirac fermions. To prevent v from acquiring
a Majorana mass, U(1); must remain unbroken by any single scalar with a U(1); charge double
that of vj.

A U(1) symmetry only admits Z,, subgroups, where in this case we denote as Z,, the cyclic
group of n elements. This group is characterized by the following property: if g is an element
of the group different from the identity, then ¢"*! = g. This type of groups only admit one-
dimensional irreducible representations, which are usually represented by w = exp (27l)/n, with
w™ = 1. There are two possible cases depending on how lepton number ir broken to a Z,,

subgroup:

o If U(l);, — Z, = Zy;,.1, with k an integer such that £ > 1, then neutrinos are Dirac

particles.

o IfU(1);, — Z, = Z,,, with k an integer such that k£ > 1, then neutrinos could be Dirac or

Majorana particles.

In the latter case, there is possible to separate two possible scenarios, depending on the charges

of neutrinos under the unbroken Z,, symmetry[99]:
e If v ~ w" under Z,,, then neutrinos are Majorana particles.
e If v » w* under Z,,, then neutrinos are Dirac particles.

Therefore, from a symmetry point of view, there are more possibilities that lead to Dirac neutri-
nos than Majorana. This is in contrast from the common idea thar neutrinos should be Majorana

particles due to their complete charge neutrality.

The basic setup provided by the standard model is listed in table 4.1
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[Ficld [ SUB). [ SUR@)y | ULy [ U, [ «?F ]

Qi 3 2 1/6 0 1
U;p 3 1 2/3 0 1
dip 3 1 —1/3 0 1
L, 1 2 —1/2 1 w?
in 1 1 -1 1 w?
| H | 1 2 |12 ] 0o [ 1]

Table 4.1: Standard Model fermions and scalars and their gauge transformation properties and the
global L.

The remnant symmetry of our model will be Z, which allows the neutrinos of our model
to be Dirac particles as expected. The additional particles of our model are listed in table 4.2.
Some additions to the matter content are needed to ensure anomaly cancellation. We have
included three new charged fields under L: in the scalar sector, a doublet 1, and the singlets ¢
and o. In the fermionic field, we have added the right-handed neutrinos v, and v5p, the gauge
singlets S;; and S;p, and the fields ny and n;. Note that, in contrast with other related works
where the chosen lepton number is integer for the new scalar fields, here we have decided to

assign half-integer lepton number to 7 and o.

Field | SU3)s | SU(2)yy, | U(1)y | U(1), | w?E
Vog 1 1 0 4 w?
Vsp 1 1 0 -5 | w?
L, 1 2 —1/2 | 1-3 | W%
e 1 1 —1 | 1-3 | o*
np 1 1 0 1—3 | o
LY, 1 2 —1/2 l w?
ey 1 1 -1 l w?
ny 1 1 0 I w?
S 1 1 0 /2 | w
Sir 1 1 0 /2 | w

) 1 1 0 3 1
n 1 2 1/2 | —1/2 | &P
o 1 1 0 —7/2 | WP

Table 4.2: Our SM extension: new fields and their symmetry properties.

We note the first set of new fermions, which is a sequential generation of fermions with lepton
number L = —3. The second set of fermions with opposite chirality has lepton number {. This

is necessary, since the difference of 3 is required by anomaly cancellation. We show how the
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chosen model is free of anomalies:

[SU2)w]> U(1), : 3(3)(1/6) + (1/2)[-3] = 0,
UMWy UQ)L : 3[2(=1/2)? = (=1)’] + 2(=1/2)*(1 = 3 = 1) + (=1)*I = (-1)*( = 3) = 0,
UL)y[U(1)]? :3[2(=1/2) = (=1)] + 2(=1/2)[(1 = 3)* = 1’| = I = (-1)(I = 3)* = 0,
[U1))2:3[2—1] —2(4)% — (=5)3 +2[(1 =33 = 1¥] + 1> — (1 - 3)3

(
+ [P = (=31 +[(1/2)° = (1/2)*| = 0,
U(l), :3[2— 1] —2(4) = (=5) +2[(1 —3) =l +1— (I —3) + [l — (I - 3)]

+[(1/2) = (1/2)] = 0.
(4.2)

The singlet scalar ¢ of our model is the responsible for the spontaneous breaking of lepton number
gauge symmetry. Note that because of the selected L charges of the right-handed neutrinos, the
SM Higgs H does not connect v; with vp. Therefore, the neutrinos do not get mass from the

standard electroweak symmetry breaking.

4.1.1 Scalar spectrum

Given the fields and symmetries of our model, we can construct the simplest scalar potential,

which is given by:

Vo= > [k3(sts) + A (T8)%) + Ay (HTH) () + Ny, (Hm) (n' H) (4.3)

s=H,p,n,0
+)‘HU(HTH>(U*U) + )‘H¢<HTH><¢*¢> + >‘770'<77T77) (U*U) + )‘n¢(nT7])<¢*¢)
Hy
+ A, (0% 0) (") + L= (nTHop + h.c),
s(070)(¢"9) \@(77 ¢ )

where the mass parameter p, is assumed real for simplicity. From Vit can be noted that ¢ breaks
U(1);, by three units. After EWSB there is a remnant gauge discrete symmetry Z; with charges
w2t where w = exp (2mi/3). Both the fields H and ¢ will acquire a vev. The CP-even field
of the neutral component of H acquires a mass mio = 2\yv?, and is identified with the Higgs
boson, which was observed in 2012 at LHC with a mass of 125 GeV. The remaining components

of H are absorbed by the gauge sector via the Higgs mechanism, generating the bosons W+ and
Z.

The dark sector will be formed by the rest of the scalar fields which are odd under matter

parity, and hence do not acquire a vev. The scalar doublets can be expanded into components

64



according to

ht n+
H = ( v+s+ia ) y n= < Nr+in; ) 5 (44)
V2 V2

where v/v/2 represents the vev acquired by the neutral component of H. We have also decom-

posed n° in real and imaginary parts. The field ¢ is written as

¢ = \/i )

(4.5)
where (¢) = w/v/2 represents the vev acquired by the real component of ¢ after lepton number
is broken, and is the only new dimensional scale introduced, with all of the other parameters
being dimensionless couplings.

The expectation values can be determined from the minimization condition

87‘/
O0s

v

H=(H) 0,
o=(¢)

= 0. (4.6)

H=(H)
¢=(¢)

The minimization condition of the scalar potential yields the following relations:

2
=3 (A + 207N

The first component of the scalar doublet 1 corresponds to a massive charged scalar field, n*,

whose mass is 5
2 _ .2
My = Hy +

)\H’I]UQ )\n¢w
4.

The spontaneous symmetry breaking induces a mixing between the fields s and ¢,., given by the

matrix )
QA 507 A 0w
2 _ H H¢
MS7¢"‘ ( )\H(z)'l)w 2)\¢w2 ) ’ (49)

The previous matrix can be diagonalized via

Y1) cosf sinf s
(‘P2 >_(—SiH9 Cos0> ( T)’ (4.10)

VWA

with

tan 26 = (4.11)

w2y — vy

This is the mixing angle that parametrizes the mixing between the real singlet components of
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H and ¢. This mixing is a consequence of the presence of the 'Higgs portal’ coupling A g
The fields ¢, and ¢, are the mass eigenstates. Their masses are found upon diagonalizing the

previous matrix. The resulting mass eigenstates are

My o = Agv? + )\¢w2 F \/)\%04 — ZAHA¢U2w2 + )\%{¢U2w2 + )\iw‘*. (4.12)

The coupling Ap, leads to a tree shift in the Higgs quartic coupling[100], which provides a
mechanism to stabilize the vacuum in the presence of the exotic charged leptons with large
Yukawa couplings to the Higgs. It has also been shown to be a particularly efficient stabilization
mechanism when m,, > m,, , even for small mixing angles[101]. The fields n° and o acquire a
vev mix arising from (1°,0)M2(n°, o)", where

2 ;o2 2 2 pgvw
M2 — 1 (2 + Nygyv ;F;\anU T AW , 3/52 ) (4.13)
vo2 e 245 + A, 0% 4 Agpw

Upon diagonalizing the mass matrix above, we find two complex neutral scalars in the spectrum

0 . 0
Y1\ cosf sinf n
( P ) N ( —sinf cos6 ) ( o ) (4.14)

o

where 7
2p4vw
30— 12+ 02y Aty — i) 00y~ D)
The mass eigenvalues of previous states are given by
1 /
My, = 1 (2002 + 12) + 02 (Mg + My + M) + 02 g+ ) (4.16)

2
- J (2012 = 122) + 02 (Vg + Apty — Azo) + 07 gy — Ago) ) + 2030702 | (4.17)

In Eq. 4.13 the real and imaginary parts of the scalar fields appear together, that is, real and
imaginary part are degenerate in mass. That means that, if dark matter is scalar, it is described
by a complex field, in contrast with conventional scotogenic scenarios, in which they are nearly

degenerate but not exactly so.
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4.1.2 Gauge sector

There is a new gauge boson Z; associated to U(1),;. We consider the unitary gauge, and use

i = ( ﬁ )@= (4.13)

The covariant derivative is defined as

D, =9, +igr,W! +igYB* +ig LZ}, (4.19)

and we also make use of the definition

1 ,
Wi = 7 (W1 FiW,s), (4.20)

to study the interactions of Z%, which are encoded in the following Lagrangian density

£y, > (D*H)' (D, H) + (Dr¢)' (D,¢) = Lv? [(gW) —g'B")? + 20> WH W, ]

+1 (3693w 24 Z,,,) . (4.21)
The previous Lagrangian contains additional terms, such as gZ’L‘”BW, L YD, Ly, E}J’y“DuL’L,
LY{~A"D, LY, where Z” and B, are the U(1), and U(1)y field strength tensors, respectively.
There is no 5M2ZLHZ“ term since ¢ is not charged under the SM, and the Higgs has L = 0.
The left handed SM lepton doublets L; couple to Z;, and because of the U(1) kinetic mixing
Z — Z;, there is a B* — Z' coupling parametrized by €[102]. As it was noted in [103], the
strongest bound on Z; comes from LEP II data[l04]:

w > 1.7 TeV, (4.22)

which is roughly independent of the g; value.

The imposition of € = 0 at tree level through symmetries is possible, although in general it is a
free parameter of the theory and is additively renormalized by loops of leptons. The inclusion
of this term causes that after lepton and electroweak symmetry breaking the Z — Z; mixing is

parametrized by
2MZs,eV'1 — €2
Mz — MZ(1—€?) + Mzs%e?’

tan 2 = (4.23)
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where £ is the Z;, — Z mixing angle, M and M, are the masses of Z and Z, respectively, and
s,, is the sine of the weak angle.

In the following calculations, we take € = 0 at tree level and set the scale of U(1); symmetry
breaking at its lower bound w = 1.7 TeV. With these considerations, we rewrite the following

term

2
2 ’2 WM o /B,u
SR (gWh gy =TI e (9 9 . (4.24)
8 g2 +g/2

We can reduce this term by noticing that
Wi — g B\’ 1 2 ' 4
mey o (4 ) (%) e
9>+ 97 9°+g —99" g B,
which can be diagonalized by an orthogonal transformation of the form:
Wus ) = owsw ) (4 (4.26)
Bu —Sw Cw Au

where ¢y, = cos Oy, sy, = sinfyy, and 0y, is the weak (or Weinberg) angle. The weak angle can

be determined explicitly as follows:

gWh — g’ Bt
/g2 +g/2

e ) (% #)(5 E)(E)
9> +g? Sw Cw —4g99 g —Sw  Cw A,u (4.27)

1
== ( gk Am
g2 + g/2 ( )
(gew + 9 SW)2 —gg’ cos 20y, + (9°=9") gin 20, ( Z, ) .
—gg’ cos 20y, + (g* g 0*—9") Gin 20y, (gsw—yg CW)2 A,
From the diagonal condition, we obtain:
2 /
tan 20y = igga. (4.28)
By identifying A* with the massless photon, we find:
¢ S
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The solution to both equations is

/

g g
Sy = ——m e, Gy = ——. (4.30)
/92 + g/2 92 + g/2
In terms of the physical gauge bosons, we obtain
(82 +¢?)

(D*H)" (D, H) + (D"$)" (D,¢) = £U2W“+WM_ -

9
1 vZMZ, + 5gguﬂzgzw. (4.31)

8

We can identify from the previous expression the mass terms:

2 /2 2
g-v g +g°)v
My =8 =Wy g (4.32)

4.1.3 Scotogenic neutrino masses

The Yukawa Lagrangian is

—Ly=y°LyHep + yu@LﬁuR +y'Q Hdp +y"Ly Sgi) + hSpvpo + ME S Sy
+y{ @ HY L+ ys Ty Help + y5 € gl +y§ Lo" L (4.33)

+ y?@ﬁTL% + ygflLﬁnR +yinpong + hc,

where H = ir2H*. We also need to note that hys = 0 since only the terms v, participate in
the neutrino mass generation mechanism, due to the assigned chiral charges of the right handed
neutrinos (4,4, —5). Therefore, this mechanism gives mass to two of the SM neutrinos. The vgp
remains massless and decouples from the rest of the model. Additional terms could be included
in the Lagrangian depending on the value of I, but we leave this value unspecified to restrict
the analysis to the minimal number of terms. If we were to choose specific values for [, we
must do the assignments in such a way that we do not allow tree-level couplings of the form
ng (v, HY — e, H') and similar. The selected U(1), charge for phi also avoids that a heavy
stable lepton with unacceptably large couplings to Z or H appears.

In addition, one can note that in the limit that the Yukawa couplings y§/,yi/ ,ys — 0, one
recovers the global symmetries which in this case separately preserves L, [ and [—3. As a result,
it results natural that these couplings satisfy y, < 1, implying that vector-like masses for the
new leptons much smaller than w are natural. Furthermore, the small values of the rest of the
new lepton couplings yf/, y;' are also natural.

Neutrino masses are not generated at the tree level, they arise as a calculable one-loop

contribution via the diagram in Fig. 4.1.
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Figure 4.1: One-loop diagram for neutrino masses.

The expression for the neutrino mass matrix in the scotogenic model can be formulated in

terms of the one-loop Passarino-Veltman function B,[105-107]:

sin 26

(m,),; = 553 kz Yhims, (—1)? By (0,m2,m% ), (4.34)

Here, mg, represents the eigenvalues of the Dirac mass matrix M D m; (for i = ¢y, p,) are the
previously found eigenvalues meo of the mass eigenbasis of the rotated fields n° and o, sin 26

corresponds to their mixing angle given in Eq. 4.15, and B, is defined as:

m?2 logm?2 — m?gk log m%k

B, (0,0m2.m2 J=A_+1— 4.35
0 ( s Hoas Sk) € mg o mQSk ’ ( )
where A_ diverges in the limit ¢ — 0. Expanding the previous result, it takes the form:
sin 20 m> m?2 m?2 m?2
(m,).. = —= > yhhymg £ 5 In 51 — P2 5 In ;02 ) (4.36)
vijg o 3272 ; vEERTT Ok m?ol —mg  mg mig —mg - omg

Concerning dark matter stability in this particular model, we observe that the lightest particle
inside the loop is stable. This holds true for both the cases the fermionic and scalar dark matter
candidates. All the particles in the internal loop are odd under the remnant Z4, while the SM
particles are even. This implies that any combination of SM fields will be even under the residual
subgroup, forbidding all effective operators leading to dark matter decay and preventing mixing

with the SM leptons.

4.1.4 Comments and ongoing work

In the ongoing development of this thesis, we are concurrently working on a companion paper

that will extend certain aspects covered in this thesis, with a primary focus on the phenomeno-
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logical facets of our theoretical framework. In this section, we provide a comprehensive overview
of the essential theoretical foundations necessary for the ongoing study. Furthermore, we engage

in a discourse on the anticipated outcomes and implications within the framework of our model.

In the preceding section, we discussed the possibility of the dark matter candidate being
either scalar or fermionic. In the case of a scalar dark matter candidate, the stability criterion
designates the lightest among the scalars ¢! and () as stable, assuming the role of dark matter.
Consistency with direct detection experiments necessitates a very small coupling between the
complex dark matter candidate and the Z-boson. This can be achieved through minimal mixing
between ¢! and (9, where the lightest state is ¢, predominantly representing the scalar singlet

g.

While an in-depth examination of the properties of dark matter candidates is beyond the
scope of this work, it will be thoroughly explored in the forthcoming paper. In that paper, we
will demonstrate how one can satisfy direct detection constraints and achieve the required relic
density. The dark matter candidates may exhibit couplings to the new gauge boson Z; and the
new scalars, potentially yielding the right annihilation cross sections near resonance. There is

enough freedom to possibly satisfy the the direct detection constraints coming from experiments.

Moreover, this model encompasses various components that may contribute to explaining
the baryon asymmetry of the universe. Our current construction inherently includes new mas-
sive states and interactions with CP-violating phases. Consequently, it is intriguing to explore
whether this model can effectively explain both the baryon asymmetry and dark matter. The
WIMP in this model is a Dirac fermion, offering the potential to realize a theory involving

asymmetric dark matter.

If DM consists of WIMPs, it could be the case that DM particles are produced at the LHC and
subsequently escape the detectors. For this reason, there are several collaborations dedicated
to the search for events where large missing energy is the dominant discriminating signature
of DM. In addition, the DM abundance in our universe is likely to be fixed by the thermal
freeze-out phenomenon: DM particles, initially present in our universe in thermal equilibrium
abundance, annihilate with one another until chemical equilibrium is lost due to the expansion
of the universe. The present-day relic density of these particles is predictable and, in the simple

case of s-wave self-annihilation of DM in the early universe, it comes out to be

2% 2.4x10719GeV 2

<Uv>ann

Qppih? =~ , (4.37)

where (ov),,, is the total thermally-averaged annihilation cross section, and the factor of 2 in the

ann

numerator is made explicit to emphasize the fact that we are assuming a non-self-conjugate DM
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particle. This abundance must match the one measured by the Planck collaboration Q¢ h? =
0.1199 4 0.0027.

We do not have enough information about the detailed nature of cold dark matter (CDM)
except for its relic density. There are major experimental efforts for direct and indirect detection
of dark matter particles besides the gravitational effect that it has on the Universe because they
must have some connection to the SM particles. Direct detection probes the scattering of dark
matter off nuclei in the dark matter detectors, while indirect detection investigates the SM final
states from the annihilation of dark matter by cosmic ray detectors.

Curves corresponding to the correct relic abundance serve as benchmark EFT constraints.
Part of the ongoing paper includes an analysis of the annihilation channels and the computation
of the relic abundance for DM candidates to establish allowed mass ranges. To provide a
solid foundation for these calculations, we begin with some general considerations about DM
abundance, working within a set of assumptions.

Relic density constraints on thermal DM are often considered non-robust. For a given pa-
rameter set, the relic density can vary depending on the inclusion of additional annihilation
channels, such as those involving leptons. Conversely, the true relic density might be larger if
the dark sector includes various types of DM. Despite these challenges, under a modest set of
assumptions, relic density constraints can become substantially more powerful. For instance,
in [108], the assumptions include: the DM candidate constitutes 100% of the DM in the uni-
verse, the DM annihilation rate is related to the observed density today through the standard
thermal production mechanism, the dominant annihilation channel is to Standard Model (SM)
fermions via one dark mediator, and the DM couples to u, d quarks, with the coupling to the first
generation of quarks no less than the coupling to other SM fermions. Under these assumptions,
the relic density constraint provides a range within which the dark sector parameters should lie.
The computation of relic density is commonly performed using the software micrOMEGAs[109].

Irrespective of the Dirac or Majorana nature of neutrinos, if U(1), breaks to an even residual
Z4yn symmetry, there is an associated 0v2n S decay allowed by the residual symmetry. If neutrinos
are Dirac particles, the lowest process allowed by Z,, symmetry is Ov2nf decays, with all other
lower-dimensional processes being forbidden by the residual Z,, symmetry. Regarding our
model, in the exceptional hypothetical case that a 0v63 decay was observed in future experiments
without positive signals of 0v2kg3 decay, with k < 3, then neutrinos should be Dirac particles.
The same reasoning can be generalized to higher Z,, symmetries and 0v2nf decays. The notion
that neutrinos are Dirac particles remains viable in the absence of incontrovertible experimental

proof of the existence of neutrinoless double-beta decay.
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Summary and Conclusion
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The minimal Standard Model stands as a remarkable achievement in particle physics, pro-
viding accurate explanations for numerous experimental observations. However, inherent limita-
tions and persisting questions underscore its incomplete nature. The groundbreaking discovery
of neutrino oscillations unveiled the non-negligible masses of neutrinos, challenging the massless
assumption of the Standard Model. Additionally, the model falls short in elucidating the mys-

teries of dark matter, the baryon asymmetry of the universe, and other unresolved phenomena.

Addressing some of these fundamental challenges within the Standard Model, this thesis has
crafted an extension based on the scotogenic model, aiming to address neutrino mass generation
and introduce viable dark matter candidates. The exploration began with an in-depth examina-
tion of neutrino mass generation mechanisms, encompassing the dimension-5 Weinberg operator

and the seesaw mechanisms, capable of generating the Weinberg operator at tree level.

Subsequently, we introduced a minimal extension known as the scotogenic model, where
neutrino masses arise through a one-loop radiative mechanism, accompanied by the inclusion of
dark matter candidates. The versatility of the scotogenic model has led to numerous extensions,
accommodating both Dirac and Majorana neutrinos, and incorporating various modifications

such as altered particle content and the introduction of new symmetries.

Building upon these extensions, our theoretical framework was presented, featuring the gaug-
ing of lepton number U;, spontaneously broken by a scalar singlet ¢ acquiring a vacuum ex-
pectation value. This breaking results in a residual discrete Z; symmetry that ensures dark
matter stability. The inclusion of this symmetry necessitated the introduction of new particles
in the scalar and fermionic sectors, their charges under U;, and careful anomaly cancellation
to maintain theoretical consistency. Our model intriguingly ties dark matter stability to the

smallness of neutrino masses.

A dark sector emerges, acting as mediators in the radiative mechanism responsible for neu-
trino mass generation at the one-loop level. The specific choice of L charges for right-handed
neutrinos dictates that only two of the three SM neutrinos acquire mass through this mecha-

nism, leaving the third right-handed neutrino massless and decoupled from the rest of the model.

An additional consequence is the appearance of a new gauge boson Z;, for which we dis-
cussed interactions and computed the mass term. The most plausible dark matter candidate is

the lightest of the internal loop particles, odd under the Z; symmetry, with potential scalar or
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fermionic nature. Our model predicts Dirac neutrinos and upholds lepton number conservation.

Despite years of investigation, the true nature and mass generation mechanism of neutri-
nos remain elusive. Neutrinos might be either Majorana or Dirac particles, and their character
may be revealed through observations of lepton number-violating processes such as neutrinoless

double-beta decay.

Emphasizing the importance of exploring diverse neutrino mass mechanisms and dark matter
candidates, even in marginally viable models, this thesis contributes to the ongoing pursuit of
answers. While uncertainties persist, we expect from the acquisition of new data to exclude
certain models, gradually narrowing down the viable theories explaining neutrino masses and
the nature of dark matter. Until these mysteries are unraveled, it remains uncertain whether
dark matter’s nature is intricately linked to the smallness of neutrino masses. We anticipate

that as answers unfold, they may lead to new questions and avenues for exploration.
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