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Abstract

This thesis addresses two significant aspects of contemporary physics: the generation of neutrino
mass and the study of dark matter. Despite being initially considered massless in the Standard
Model of particle physics, experimental evidence now confirms that neutrinos do possess mass.
In this work, we examine popular mechanisms explaining neutrino mass generation and present
a model that not only provides a mechanism to origin neutrino mass but also introduces dark
matter candidates. Following an introduction to Group Theory and the Standard Model, we
explore mechanisms for neutrino mass generation and review key concepts related to dark matter.
The scotogenic model is presented and serves as the foundation of our theoretical framework,
extending the Standard Model by elevating lepton number to a gauge symmetry. This additional
symmetry necessitates the introduction of extra particles, and we describe their interactions and
resulting phenomenology. The results of this thesis will be extended in a future publication. By
exploring the connections between neutrino masses and dark matter within models beyond the
Standard Model, we aim to deepen our understanding of fundamental particles and their role in
shaping the universe.
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The Standard Model (SM) [1–3] is widely regarded as one of the most successful physical the-
ories due to its remarkable ability to explain a wide range of particle physics phenomena. It
encompasses the fundamental particles and the electromagnetic, strong, and weak interactions.
However, despite its accomplishments, the SM has certain limitations, particularly in the con-
text of massive neutrinos [4–6] and dark matter [7–9].

Neutrinos were first proposed by W. Pauli in 1930 to account for the continuous beta decay
emission spectrum [10, 11]. Pauli proposed that neutrinos possessed mass and were electrically
neutral, but subsequent work by E. Fermi [12], who popularized the term ”neutrino,” and F.
Perrin [13] suggested that they were actually massless. In addition, in 1934 Bethe and Peierls
[14] showed that the cross-section between a neutrino and a proton should be extremely small
and theorized that neutrinos would never be observed. Within the framework of the Standard
Model, neutrinos are treated as massless entities. However, experimental evidence from neu-
trino oscillation experiments [15–17] indicates that neutrinos must have mass. This inconsistency
points to the incompleteness of the Standard Model and the need for new physics to elucidate
the origin and remarkably small magnitude of neutrino mass compared to other fermions in the
Standard Model.

Exploring various mechanisms to confer mass to neutrinos is crucial for advancing towards a
more comprehensive theory of particle physics, ensuring consistency with existing experimental
constraints [18]. Furthermore, understanding neutrino mass may reveal connections to other
unresolved questions in particle physics, such as the nature of dark matter [19].

Dark matter, constituting approximately 27% of the universe’s energy according to cosmo-
logical observations, is a form of matter that interacts weakly with Standard Model particles.
The Standard Model lacks a viable candidate for dark matter, explaining only about 4% of the
total energy content of the universe [20]. Consequently, the existence of a new type of matter,
likely in the form of a fundamental particle beyond the Standard Model, is required to account
for dark matter. Such particle candidates should be stable over cosmological time scales, given
that dark matter should have existed from the early universe until today.

An intriguing possibility is the existence of a common origin between neutrino mass and
dark matter. For instance, dark matter could potentially serve as the mediator for neutrino
mass generation [21–24], or the symmetry stabilizing dark matter might be intimately related
to neutrinos [25, 26]. Understanding the nature of both neutrinos and dark matter holds the
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potential to illuminate unresolved issues at the interface of cosmology and particle physics.

In Chapter 2 of this thesis, we provide an overview of the theoretical foundations necessary
to comprehend the subsequent content. This includes an introduction to Group Theory, the
Standard Model of Particle Physics, and dark matter. Chapter 3 focuses on reviewing models
capable of explaining the generation of massive neutrinos, such as the seesaw mechanism and the
Scotogenic Model [27]. In Chapter 4, we present an extension to the Scotogenic Model, wherein
lepton number is gauged and then spontaneously broken by three units, leading to light Dirac
neutrino masses induced through a radiative mechanism and the appearance of dark matter
candidates.
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In this introductory chapter, we cover background topics relevant to the subsequent chapters.
The chapter is divided into three main sections.

In Section 2.1, we provide an introduction to group theory in the context of the Standard
Model. We begin with a series of definitions and fundamental facts in Section 2.1.1. Following
this, we focus on the relevant groups in the Standard Model, namely SU(2) and SU(3), and
discuss their properties in Sections 2.1.2 to 2.1.4.

Moving on to Section 2.2, we review the fundamentals of the Standard Model. First, we
present the particle content of the Standard Model in Section 2.2.1, detailing the various ele-
mentary particles and their properties. In Section 2.2.2, we delve into the interactions between
these particles, encompassing the electromagnetic, weak, and strong forces.

Sections 2.2.3 and 2.2.4 are dedicated to understanding the mechanism responsible for giving
mass to particles in the Standard Model. Here, we discuss the Higgs mechanism and sponta-
neous symmetry breaking, pivotal elements in generating masses for particles and breaking the
electroweak symmetry.

In Section 2.2.6, we introduce the Lorentz group, a fundamental concept in relativistic
physics. Section 2.3 is dedicated to dark matter, presenting the evidence for it and potential
candidates.

2.1 Introduction to group theory

2.1.1 Lie Groups and Algebras

In this section, we present key concepts of group theory without formal proof. The following
definitions and properties are drawn primarily from the books by Zee [28] and Keski-Vakkuri
[29], which serve as references for the remaining sections of this chapter.

Consider a set 𝐺 = {𝑎, 𝑏, …} equipped with a binary composition law. We define a group as
the pair (𝐺, ⋅), or simply 𝐺, which satisfies the following conditions:

1. Closure: For all 𝑎, 𝑏 ∈ 𝐺, 𝑎 ⋅ 𝑏 ∈ 𝐺.

2. Associativity: For all 𝑎, 𝑏, 𝑐 ∈ 𝐺, 𝑎 ⋅ (𝑏 ⋅ 𝑐) = (𝑎 ⋅ 𝑏) ⋅ 𝑐.
3. Identity: There exists an element 𝑒 such that for all 𝑎 ∈ 𝐺, 𝑎 ⋅ 𝑒 = 𝑒 ⋅ 𝑎 = 𝑎.
4. Inverse: For all 𝑎 ∈ 𝐺, there exists an element 𝑎−1 such that 𝑎 ⋅ 𝑎−1 = 𝑎−1 ⋅ 𝑎 = 𝑒.

An Abelian group is a group that satisfies the additional commutativity condition: for every𝑎, 𝑏 ∈ 𝐺, 𝑎 ⋅ 𝑏 = 𝑏 ⋅ 𝑎. If 𝑎 ≠ 𝑏, the group is called non-Abelian.
Now, we introduce some definitions that are useful in the context of group theory:
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• Order: The order of a group refers to the number of elements in the group, often denoted
as |𝐺|.

• Subgroup: A group 𝐽 is a subgroup of group 𝐺 if every element in 𝐽 is also in 𝐺, and the
order of 𝐽 is a factor of the order of 𝐺.

• Homomorphism: Given two sets 𝑋 and 𝑌, a mapping 𝑓 ∶ 𝑋 → 𝑌 is a homomorphism
when it preserves some structure. For example, if 𝑋 and 𝑌 are groups, a homomorphism
preserves the composition law of the groups. That is, if 𝑥1, 𝑥2 ∈ 𝑋 and 𝑓(𝑥1), 𝑓(𝑥2) ∈ 𝑌,
then 𝑓(𝑥1)𝑓(𝑥2) = 𝑓(𝑥1𝑥2).

Beyond these fundamental characteristics, group theory encompasses a vast and profound realm
of mathematical exploration. One relevant aspect within this field is the concept of a group
representation[30], denoted by 𝐷. A group representation is a homomorphism that maps
elements 𝑔𝑖 ∈ 𝐺 of a group 𝐺 to linear operators 𝐷(𝑔𝑖). Alternatively, a group representation
can be understood as a one-to-one correspondence between elements of the group 𝐺 and matrices,
expressed as 𝐷(𝑔) for 𝑔 ∈ 𝐺. A representation 𝐷 is said to be faithful if it is injective.

The vector space on which these matrices, 𝐷(𝑔), operate is commonly referred to as the
representation space. The dimension of the representation space corresponds to the dimension
of the representation itself. If we consider a vector from the representation space of 𝐷(𝑔) and
observe that the action of 𝐷(𝑔) on this vector, within a specific subspace, yields another vector
residing in the same subspace, then the representation is categorized as reducible. Conversely,
an irreducible representation does not possess such invariant subspaces. In summary, these
properties enable us to express any reducible representation of the group 𝐺 as a direct sum of
irreducible representations. The groups that are relevant to us are the Lie groups. Lie groups
are groups whose elements are labeled by a set of continuous parameters.

Another concept relevant to our purposes is the direct product. The direct product of two
vectors 𝑢 and 𝑣 is denoted by (𝑢, 𝑣). An operator 𝑈 ∶ 𝑉 → 𝑉 is considered unitary if, for every𝑣, 𝑤 ∈ 𝑉, (𝑣, 𝑤) = (𝑈𝑣, 𝑈𝑤). A unitary representation of a group 𝐺 is a homomorphism that
maps elements of the group to unitary operators.

The orthogonal group of degree 𝑛 is defined as the group of real matrices whose inverse
coincides with their transpose:

O(𝑛, ℝ) = {𝐴 ∈ GL(𝑛, ℝ) ∶ 𝐴𝑇𝐴 = 𝐴𝐴𝑇 = 𝟙𝑛} . (2.1)

The subset of O(𝑛, ℝ) including matrices with determinant 1 is called the special orthogonal
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group of degree 𝑛:
SO(𝑛, ℝ) = {𝐴 ∈ GL(𝑛, ℝ) ∶ 𝐴𝑇𝐴 = 𝐴𝐴𝑇 = 𝟙𝑛,det𝐴 = 1} . (2.2)

The generalization of the orthogonal group of degree 𝑛 to the complex field is the unitary group
of degree 𝑛, defined as:

U(𝑛, ℂ) = {𝐴 ∈ GL(𝑛, ℂ) ∶ 𝐴†𝐴 = 𝐴𝐴† = 𝟙𝑛} , (2.3)

where 𝐴† is the conjugate transpose of 𝐴. The subset of U(𝑛) containing matrices with deter-
minant equal to 1 constitutes the special unitary group of degree 𝑛:

SU(𝑛) = {𝐴 ∈ U(𝑛),det𝐴 = 1} . (2.4)

Consider an element U ∈ SU(𝑛). U can be represented using the exponential map:

U = 𝑒−𝑖𝜃⋅𝑋 = 𝑒−𝑖𝜃𝑎𝑋𝑎 , (2.5)

where 𝜃𝑎 are real parameters, and 𝑋𝑎 represents matrices. Each 𝑋𝑎 can be found by computing:𝑋𝑎 = 𝑖 𝜕U(𝜃)𝜕𝜃𝑖 ∣𝜃=0 . (2.6)

These matrices 𝑋𝑎 are called the generators of the (Lie) group. The generators form a basis for
the real Lie algebra associated with the corresponding Lie Group. With this, we can define a
Lie algebra as a linear space spanned by linear combinations ∑𝑖 𝜃𝑖𝑋𝑖 of the generators.
The commutator is defined as [𝐴, 𝐵] = 𝐴𝐵−𝐵𝐴. The Lie Algebra is defined by the commutation
relations between the generators of the group. These commutation relations are written as:[𝑋𝑎, 𝑋𝑏] = 𝑖𝑓𝑎𝑏𝑐𝑋𝑐, (2.7)

where 𝑓𝑎𝑏𝑐 are called structure constants. For example, the Lie algebra 𝔰𝔬(3) is defined by the
commutation relations: [𝐽 𝑖, 𝐽 𝑗] = 𝑖𝜖𝑖𝑗𝑘𝐽𝑘. (2.8)
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These relations are fulfilled by the generators of SU(2):𝐽1 = 12 (0 11 0) = 𝜎12 , 𝐽2 = 12 (0 −𝑖𝑖 0 ) = 𝜎22 , 𝐽3 = 12 (1 00 −1) = 𝜎32 , (2.9)

where we have introduced the Pauli matrices 𝜎𝑖, which satisfy the following relations:[𝜎𝑖, 𝜎𝑗] = 2𝑖𝜖𝑖𝑗𝑘𝜎𝑘, {𝜎𝑖, 𝜎𝑗} = 2𝛿𝑖𝑗1, 𝜎𝑖𝜎𝑗 = 𝛿𝑖𝑗1 + 𝑖𝜖𝑖𝑗𝑘𝜎𝑘. (2.10)

The group elements of SU(2) are of the form:𝑈 = 𝑒−𝑖 𝜎𝑖2 𝜃𝑖 , (2.11)

which transform two-component objects called spinors:𝜒 → 𝜒′ = 𝑈𝜒, (2.12)

leaving their Hermitian product invariant 𝜂†𝜒′ = 𝜂†𝑈†𝑈𝜒 = 𝜂†𝜒.
The groups SO(3) and SU(2) are locally equivalent, but there is a global difference. For

example, if we take a 2𝜋 rotation around the 𝑧 axis, we can represent that rotation by:𝑒−2𝜋𝑖𝐽3 = 𝟙3×3 (2.13)

for vectors under SO(3). Nevertheless, the same transformation for spinors under SU(2) is:𝑒−2𝜋𝑖𝐽3 = −𝟙2×2. (2.14)

Thus, two complete rotations are needed to return to the original state.

2.1.2 Irreducible representations of SU(2)
The groups that are relevant for the Standard Model, and most of particle physics, are U(1),
SU(2), and SU(3). In this section, we focus on the study of the SU(2) group.

It is common to define the su(2) algebra in terms of the generators 𝐽𝑎 which satisfy the
commutation relations: [𝐽𝑎, 𝐽𝑏] = 𝑖𝜖𝑎𝑏𝑐𝐽𝑐. (2.15)

Supposing that 𝐽3 is represented by an 𝑁×𝑁 hermitian matrix and diagonalizing it, our objective
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is to determine the matrix representation for the elements of the rotation group and ascertain
the dimension of the objects that undergo transformations under the group’s action.

To achieve this, it becomes essential to identify the Cartan subalgebra, which encompasses
the maximum count of independent operators that can be simultaneously diagonalized. In this
context, we introduce the Casimir operator, which plays a crucial role in the study of the group’s
representation:

J2 = 𝐽 𝑖𝐽 𝑖. (2.16)

This operator commutes with all the generators:[J2, 𝐽𝑎] = 0. (2.17)

According to a corollary of Schur’s lemma, J2 must be proportional to the identity operator.
The proportionality constant, denoted as 𝐶2, may vary depending on the specific representation.
Thus, we have:

J2 = 𝐶2𝟙𝑛, (2.18)

where the constant 𝐶2 is referred to as the quadratic Casimir. Given that [J2, 𝐽𝑎] = 0, the
elements of the Cartan subalgebra in our case are {J2, 𝐽3}.

Now, we build a basis of states to set up the eigenvalue problem. As in quantum mechanics,
we label the states by |𝑗, 𝑚⟩, where 𝑚 is the eigenvalue of 𝐽3:𝐽3|𝑗, 𝑚⟩ = 𝑚|𝑗, 𝑚⟩, (2.19)

and 𝑗 is a common label for all the states that belong to the same multiplet, which coincides
with the largest eigenvalue of 𝐽3, such that𝐽3|𝑗, 𝑗⟩ = 𝑗|𝑗, 𝑗⟩. (2.20)

Now, we define the ladder operators: 𝐽± ≡ 𝐽1 ± 𝑖𝐽2. (2.21)

In terms of these operators, the 𝔰𝔲(2) algebra becomes:[𝐽3, 𝐽±] = ±𝐽±, [𝐽+, 𝐽−] = 2𝐽3, (2.22)
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and due to hermiticity: (𝐽−)† = 𝐽+. (2.23)

We compute the action of 𝐽3𝐽± on the states |𝑗, 𝑚⟩:𝐽3𝐽±|𝑗, 𝑚⟩ = (𝐽±𝐽3 ± 𝐽±) |𝑗, 𝑚⟩ = (𝑚 ± 1)𝐽±|𝑗, 𝑚⟩, (2.24)

meaning that the state 𝐽±|𝑗, 𝑚⟩ is an eigenvector of 𝐽3 with eigenvalue 𝑚 ± 1. Therefore,𝐽±|𝑗, 𝑚⟩ must be proportional to the state |𝑗, 𝑚 ± 1⟩. Since the maximum value of 𝑚 is 𝑗, we
must have: 𝐽+|𝑗, 𝑗⟩ = 0. (2.25)

It can be shown that the following relation holds:⟨𝑗, 𝑚| [J2 − (𝐽3)2] |𝑗, 𝑚⟩ = 𝐶2 − 𝑚 ≥ 0. (2.26)

This relation implies the existence of a lower bound for the lowest value of 𝑚. Consequently,
denoting this state as 𝑗′, there is a state annihilated by 𝐽−:𝐽−|𝑗, 𝑗′⟩ = 0. (2.27)

It can be shown that the corresponding values of 𝐶2 and 𝑗′ are:𝐶2 = 𝑗(𝑗 + 1), 𝑗′ = −𝑗. (2.28)

Finally, both ends of the ladder must be connected by a finite number of steps. Thus, for some
integer 𝑛, we have: (𝐽+)𝑛 |𝑗, −𝑗⟩ ∼ |𝑗, 𝑗⟩ ⇒ −𝑗 + 𝑛 = 𝑗 ⇒ 𝑗 = 𝑛2 . (2.29)

This means that 𝑗 takes semi-integer values.
For the states to be normalized, we must have:𝐽+|𝑗, 𝑚⟩ = √(𝑗 − 𝑚)(𝑗 + 𝑚 + 1)|𝑗, 𝑚 + 1⟩, (2.30)𝐽−|𝑗, 𝑚⟩ = √(𝑗 + 𝑚)(𝑗 − 𝑚 + 1)|𝑗, 𝑚 − 1⟩. (2.31)
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Summarizing, the irreducible representation of SU(2) is determined by the relations:

J2|𝑗, 𝑚⟩ = 𝑗(𝑗 + 1)|𝑗, 𝑚⟩, 𝐽3|𝑗, 𝑚⟩ = 𝑚|𝑗, 𝑚⟩,𝐽±|𝑗, 𝑚⟩ = √(𝑗 ∓ 𝑚)(𝑗 ± 𝑚 + 1)|𝑗, 𝑚 ± 1⟩,𝑗 = 𝑛2 , 𝑛 ∈ ℤ, 𝑚 = −𝑗, −𝑗 + 1, … , 𝑗 − 1, 𝑗. (2.32)

The explicit form of an irreducible representation of SU(2) is determined by either the value of𝑗 or the dimensionality of the representation. The rotation matrix is given by:𝐷(𝑗)(𝜃, n̂) = 𝑒−𝑖J(𝑗)⋅n̂𝜃, (2.33)

which is a (2𝑗 + 1) × (2𝑗 + 1) matrix for the irreducible representation of spin 𝑗. Additionally,
the associated generators are also (2𝑗 + 1) × (2𝑗 + 1) matrices, whose elements are given by:⟨𝑗, 𝑚′|𝐽3(𝑗)|𝑗, 𝑚⟩ = 𝑚𝛿𝑚′,𝑚,⟨𝑗, 𝑚′|𝐽+(𝑗)|𝑗, 𝑚⟩ = √(𝑗 + 𝑚 + 1)(𝑗 − 𝑚)𝛿𝑚′,𝑚+1,⟨𝑗, 𝑚′|𝐽−(𝑗)|𝑗, 𝑚⟩ = √(𝑗 + 𝑚)(𝑗 − 𝑚 + 1)𝛿𝑚′,𝑚−1. (2.34)

Let’s work out the generators for the simplest irreducible representations.
The minimal value that 𝑗 can take is 𝑗 = 0. This corresponds to the trivial representation, which
is a representation of dimension one: |0, 0⟩ = 1, (2.35)𝐽 𝑖(0) = 0 → 𝐷(0)(𝜃, n̂) = 1. (2.36)

For 𝑗 = 1/2, we have the fundamental representation:∣12 , 12⟩ = (10) , ∣12, −12⟩ = (01) , (2.37)

𝐽3(1/2) = 12 (1 00 −1) , 𝐽+(1/2) = (0 10 0) , 𝐽−(1/2) = (0 01 0) . (2.38)

In terms of the Cartesian components, the generators for 𝑗 = 1/2 are given by:𝐽1 = 12 (𝐽− + 𝐽+) = 12 (0 11 0) , (2.39)

𝐽2 = 12 (𝐽− − 𝐽+) = 12 (0 −𝑖𝑖 0 ) , (2.40)
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and we recover 𝐽 𝑖(1/2) = 𝜎𝑖2 . (2.41)

For 𝑗 = 1, we have the adjoint representation:

|1, 1⟩ = ⎛⎜⎝100⎞⎟⎠ , |1, 0⟩ = ⎛⎜⎝010⎞⎟⎠ , |1, −1⟩ = ⎛⎜⎝001⎞⎟⎠ , (2.42)

𝐽1(1) = 1√2 ⎛⎜⎝0 1 01 0 10 1 0⎞⎟⎠ , 𝐽2(1) = 1√2 ⎛⎜⎝0 −𝑖 0𝑖 0 −𝑖0 𝑖 0 ⎞⎟⎠ , 𝐽3(1) = ⎛⎜⎝1 0 00 0 00 0 −1⎞⎟⎠ . (2.43)

2.1.3 Direct product of irreducible representations

We consider two independent SU(2) systems, denoted as 𝐴 and 𝐵, each with its own algebra:[𝐽 𝑖𝐴, 𝐽 𝑗𝐴] = 𝑖𝜖𝑖𝑗𝑘𝐽𝑘𝐴,[𝐽 𝑖𝐵, 𝐽 𝑗𝐵] = 𝑖𝜖𝑖𝑗𝑘𝐽𝑘𝐵,[𝐽 𝑖𝐴, 𝐽 𝑗𝐵] = 0. (2.44)

The system undergoes transformations under the direct product group SU(2)𝐴 ⊗ SU(2)𝐵. Our
chosen set of complete commuting observables consists of {J2𝐴, 𝐽3𝐴, J2𝐵, 𝐽3𝐵}. Consequently, the
states can be expressed as: ∣𝑗𝐴, 𝑚𝐴⟩ ⊗ ∣𝑗𝐵, 𝑚𝐵⟩ ≡ ∣𝑗𝐴, 𝑚𝐴; 𝑗𝐵, 𝑚𝐵⟩ . (2.45)

The SU(2)𝐴 ⊗ SU(2)𝐵 representations can be derived by taking the direct product of individual
SU(2) irreducible representations:𝐷(𝜃, n̂) = 𝐷(𝑗𝐴)(𝜃, n̂) ⊗ 𝐷(𝑗𝐵)(𝜃, n̂). (2.46)

These representations are generally reducible. Therefore, it is advantageous to describe the
system using an alternative set of observables, which incorporates the total angular momentum:

J = J𝐴 ⊗ 𝕀𝐵 + 𝕀𝐴 ⊗ J𝐵. (2.47)
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An alternative complete commuting set of observables is {J2, 𝐽3, J2𝐴, J2𝐵}. We label the states
as ∣𝐽 , 𝑀, 𝑗𝐴, 𝐽𝐵⟩ ≡ |𝐽 𝑀⟩. This basis satisfies

J2|𝐽 𝑀⟩ = 𝐽(𝐽 + 1)|𝐽 𝑀⟩, 𝐽3|𝐽 𝑀⟩ = 𝑀|𝐽 𝑀⟩, (2.48)

and facilitates the decomposition of the direct product representations into irreducible ones

𝐷(𝜃, n̂) = 𝐷(𝑗𝐴)(𝜃, n̂) ⊗ 𝐷(𝑗𝐵)(𝜃, n̂) = 𝑗𝐴+𝑗𝐵⨁𝐽=|𝑗𝐵−𝑗𝐴| 𝐷(𝐽)(𝜃, n̂). (2.49)

Now, it is essential to establish the connection between the eigenvalues and their ranges and
determine the Clebsch-Gordan coefÏcients that underpin the linear relationship between both
bases. It can be shown that𝐽3|𝑗𝐴, 𝑚𝐴⟩|𝑗𝐵, 𝑚𝐵⟩ = (𝑚𝐴 + 𝑚𝐵)|𝑗𝐴, 𝑚𝐴⟩|𝑗𝐵, 𝑚𝐵⟩. (2.50)

Furthermore, the ladder operators 𝐽± establish connections between all states that transform
under the same irreducible representation, denoted by 𝐽. The maximum value of 𝐽 is determined
by 𝑗𝐴+𝑗𝐵, while the minimum value is given by 𝐽 = |𝑗𝐵−𝑗𝐴|. For each value of 𝐽, the parameter𝑀 assumes values between −𝐽 and 𝐽 in increments of size one.

2.1.4 The algebra of the SU(3) group

The SU(3) group is characterized as the set of 3 × 3 complex unitary matrices 𝑈 with a determi-
nant equal to 1. The algebra’s dimension is dimSU(3) = 8. One frequently employed defining
representation is expressed using the Gell-Mann matrices 𝜆𝑎, analogous to the role played by
the Pauli matrices for the algebra of the generators of the SU(2) group:

𝜆1 = ⎛⎜⎝ 0 1 01 0 00 0 0 ⎞⎟⎠ , 𝜆2 = ⎛⎜⎝ 0 −𝑖 0𝑖 0 00 0 0 ⎞⎟⎠ , 𝜆3 = ⎛⎜⎝ 1 0 00 −1 00 0 0 ⎞⎟⎠ ,
𝜆4 = ⎛⎜⎝ 0 0 10 0 01 0 0 ⎞⎟⎠ , 𝜆5 = ⎛⎜⎝ 0 0 −𝑖0 0 0𝑖 0 0 ⎞⎟⎠ , 𝜆6 = ⎛⎜⎝ 0 0 00 0 10 1 0 ⎞⎟⎠ ,

𝜆7 = ⎛⎜⎝ 0 0 00 0 −𝑖0 𝑖 0 ⎞⎟⎠ , 𝜆8 = 1√3 ⎛⎜⎝ 1 0 00 1 00 0 −2 ⎞⎟⎠ . (2.51)
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The generators 𝑋𝑎 of the su(3) Lie algebra are then𝑋𝑎 = 12𝜆𝑎. (2.52)

These generators are normalized as follows:

tr(𝑋𝑎𝑋𝑏) = 12𝛿𝑎𝑏. (2.53)

The 𝔰𝔲(3) algebra reads [𝑋𝑎, 𝑋𝑏] = 𝑖𝑓𝑎𝑏𝑐𝑋𝑐, (2.54)

where the fully antisymmetric structure constants with nonzero entries are𝑓123 = 1, 𝑓458 = 𝑓678 = √32 ,𝑓147 = 𝑓165 = 𝑓246 = 𝑓257 = 𝑓345 = 𝑓376 = 12. (2.55)

2.2 The Standard model of particle physics

The Standard Model (SM) is a quantum field theory that stands on a robust phenomenological
foundation. It exhibits a remarkable predictive power in terms of various particle properties
and interactions[31, 32]. Within the SM framework, three out of the four fundamental forces of
nature are explained as arising from interactions via gauge bosons.

2.2.1 Standard Model ingredients

In the Standard Model, we employ fields to represent elementary particles, with each elementary
particle being a quantum of the corresponding quantum field. Based on their spins, elementary
particles can be classified into elementary bosons and elementary fermions. Most elementary
bosons are spin-1 gauge vector bosons, and they function as the force carriers for the fundamental
interactions.

Fermionic particles, on the other hand, interact with each other by exchanging these gauge
vector bosons. This exchange of gauge bosons mediates the interactions between fermions,
leading to the rich array of phenomena observed in particle physics[33]. The foundation of the
Standard Model lies in the local symmetry group SU(3)𝑐×SU(2)𝐿×U(1)𝑌, where the indices have
no mathematical meaning, but they refer to color, weak isospin, and hypercharge, respectively.

This gauge structure uniquely governs the dynamics of the strong, weak, and electromagnetic
interactions that take place between matter particles and force carriers. The coupling constants
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associated with these interactions are precisely determined through experimental investigations,
thus providing a robust framework that successfully accounts for a wide range of particle physics
phenomena.

The key ingredients of the Standard Model are:

• Vector fields: 8 non-abelian gauge bosons associated with SU(3)𝑐 known as gluons,
represented by 𝐺𝜇𝑎 , with 𝑎 = 1, … , 8; 3 non-abelian gauge bosons associated with SU(2)𝐽
denoted by 𝑊 𝜇𝑖 , with 𝑖 = 1, 2, 3; and an abelian one corresponding to U(1)𝑌 denoted by𝐵𝜇. Gluons mediate the strong interactions, the weak interactions are mediated by the
charged 𝑊 and 𝑍 bosons, and photons mediate electromagnetic interactions.

• Spin 1/2 fermion fields: Left-handed Weyl spinors transforming as isodoublets (Left-
handed Weyl spinors belong in the representation (1/2, 0) of the Lorentz algebra):𝐿𝑖𝐿 = {(𝜈𝑒𝑒 ) , (𝜈𝜇𝜇 ) , (𝜈𝜏𝜏 )}𝐿 ,𝑄𝑖𝐿 = {(𝑢𝑑) , (𝑐𝑠) , (𝑡𝑏)}𝐿 , (2.56)

and right-handed Weyl spinors transforming as isosinglets:𝑒𝑖𝑅 = {𝑒, 𝜇, 𝜏}𝑅, 𝑢𝑖𝑅 = {𝑢, 𝑐, 𝑡}𝑅, 𝑑𝑖𝑅 = {𝑑, 𝑠, 𝑏}𝑅. (2.57)

There are two kinds of fermion fields: quarks, transforming as triplets under SU(3)𝐶, and
leptons, which are singlets under color.

• Scalar fields: One isodoublet transforming as a singlet under color:𝐻 = (ℎ+ℎ0 ) . (2.58)

The SM fields and their transformation properties are summarized in the following table:

Field SU(3) SU(2) U(1)𝑄𝑖𝐿 3 2 1/6𝑢𝑖𝑅 3 1 2/3𝑑𝑖𝑅 3 1 −1/3𝐿𝑖𝐿 1 2 −1/2𝑒𝑖𝑅 1 1 -1𝐻 1 2 1/2
Table 2.1: SM transformation properties
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The representation of the fields is usually denoted as (𝑎, 𝑏, 𝑐), meaning that the given field
is an 𝑎-plet under SU(3)𝑐, 𝑏-plet under SU(2)𝐿, and has hypercharge 𝑐.
2.2.2 Glashow-Weinberg-Salam Electroweak Model

The Standard Model is also known as the Glashow-Weinberg-Salam model, and our main focus
will be the electroweak part of the theory. We can express the compact form of the Standard
Model Lagrangian as follows:ℒSM = ℒgauge + ℒfermion + ℒHiggs + ℒYukawa , (2.59)

which includes the gauge, fermion, Higgs, and Yukawa sectors of the theory. In our present
focus on the electroweak portion of the model, described by SU(2) × U(1), we designate the
generators of SU(2) as 𝑇𝑖, and the generator of U(1) as 𝑌. The algebra of the generators satisfies
the following relations: [𝑇𝑖, 𝑇𝑗] = 𝑖𝜖𝑖𝑗𝑘𝑇𝑘, [𝑇𝑖, 𝑌] = 0. (2.60)

For the gauge bosons, we define the matrix value fields𝒲𝜇 = 𝑇𝑖𝑊 𝜇𝑖 . (2.61)

The electric charge generator is embedded into the electroweak symmetry according to the Gell-
Mann-Nishijima formula 𝑄 = 𝑇3 + 𝑌 . (2.62)

The local invariance of the SM Lagrangian is implemented by the covariant derivative𝐷𝜇 = 𝜕𝜇 + 𝑖𝑔𝒲𝜇 + 𝑖𝑔′𝑌 𝐵𝜇 = 𝜕𝜇 + 𝑖𝑔𝑇𝑖𝑊 𝜇𝑖 + 𝑖𝑔′𝑌 𝐵𝜇. (2.63)

where 𝑔 and 𝑔′ are the SU(2) and U(1) couplings, respectively.

The kinetic Lagrangian density for fermion fields isℒfermion = �̄�𝐿𝑖𝛾𝜇𝐷𝜇𝐿𝐿 + ̄𝑒𝑅𝑖𝛾𝜇𝐷𝜇𝑒𝑅 + �̄�𝐿𝑖𝛾𝜇𝐷𝜇𝑄𝐿 + �̄�𝑅𝑖𝛾𝜇𝐷𝜇𝑢𝑅 + ̄𝑑𝑅𝑖𝛾𝜇𝐷𝜇𝑑𝑅. (2.64)

Explicitly, for leptons, we haveℒlepton = �̄�𝐿𝑖𝛾𝜇 (𝜕𝜇 + 𝑖2𝑔𝜏𝑖𝑊𝜇𝑖 − 𝑖2𝑔′𝐵𝜇) 𝐿𝐿 + ̄𝑒𝑅𝑖𝛾𝜇 (𝜕𝜇 − 𝑖𝑔′𝐵𝜇) 𝑒𝑅 (2.65)
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and for quarks ℒquark =�̄�𝐿𝑖𝛾𝜇 (𝜕𝜇 + 𝑖2𝑔𝜏𝑎𝐴𝑎𝜇 + 𝑖6𝑔′𝐵𝜇) 𝑄𝐿+ �̄�𝑅𝑖𝛾𝜇 (𝜕𝜇 + 2𝑖3 𝑔′𝐵𝜇) 𝑢𝑅 + ̄𝑑𝑅𝑖𝛾𝜇 (𝜕𝜇 − 𝑖3𝑔′𝐵𝜇) 𝑑𝑅. (2.66)

At this point, all particles are considered massless. The inclusion of mass terms would break
gauge invariance. To include mass terms for fermions, the Higgs mechanism[34] for Spontaneous
Symmetry Breaking is necessary and will be introduced in the next section.

The kinetic lagrangian density for gauge fields isℒgauge = −12 Tr [𝒲𝜇𝜈𝒲𝜇𝜈] − 14𝐵𝜇𝜈𝐵𝜇𝜈, (2.67)

where 𝒲𝜇𝜈 = 𝐷𝜇𝒲𝜈 − 𝐷𝜈𝒲𝜇, (2.68)𝐵𝜇𝜈 = 𝐷𝜇𝐵𝜈 − 𝐷𝜈𝐵𝜇. (2.69)

We can also express the Lagrangian term for the charged current interaction, which involves the
non-diagonal generators of SU(2), as follows:ℒcharged = −𝑔2 {�̄�𝐿𝛾𝜇 (𝜏1𝑊𝜇1 + 𝜏2𝑊𝜇2) 𝐿𝐿 + �̄�𝐿𝛾𝜇 (𝜏1𝑊𝜇1 + 𝜏2𝑊𝜇2) 𝑄𝐿} . (2.70)

We define 𝑊 ±𝜇 = 1√2 (𝑊𝜇1 ∓ 𝑖𝑊𝜇2) (2.71)

to obtain 𝑊𝜇1 = 1√2 (𝑊 +𝜇 + 𝑊 −𝜇 ) , 𝑊𝜇2 = 𝑖√2 (𝑊 +𝜇 − 𝑊 −𝜇 ) , (2.72)

which enables us to writeℒcharged = − 𝑔√2 {�̄�𝐿𝛾𝜇 [𝜏12 (𝑊 +𝜇 + 𝑊 −𝜇 ) + 𝑖𝜏22 (𝑊 +𝜇 − 𝑊 −𝜇 )] 𝐿𝐿+�̄�𝐿𝛾𝜇 [𝜏12 (𝑊 +𝜇 + 𝑊 −𝜇 ) + 𝑖𝜏22 (𝑊 +𝜇 − 𝑊 −𝜇 )] 𝑄𝐿} . (2.73)
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It can be demonstrated that by defining the charged currents as:𝐽𝜇𝑊 = 2 [ ̄𝑒𝐿𝛾𝜇𝜈𝐿 + ̄𝑑𝐿𝛾𝜇𝑢𝐿] ,𝐽†𝜇𝑊 = 2 [ ̄𝜈𝐿𝛾𝜇𝑒𝐿 + �̄�𝐿𝛾𝜇𝑑𝐿] , (2.74)

the above expression simplifies to:ℒcharged = − 𝑔2√2 [𝐽𝜇𝑊𝑊 −𝜇 + 𝐽†𝜇𝑊 𝑊 +𝜇 ] . (2.75)

The Lagrangian term for neutral current interaction is given by:ℒneutral = − 𝑔 [�̄�𝐿𝛾𝜇 𝜏32 𝑊𝜇3𝐿𝐿 + �̄�𝐿𝛾𝜇3 𝜏32 𝑊𝜇3𝑄𝐿]+ 𝑔′2 [�̄�𝐿𝛾𝜇𝐵𝜇𝐿𝐿 + 2 ̄𝑒𝑅𝛾𝜇𝐵𝜇𝑒𝑅]− 𝑔′2 [13�̄�𝐿𝛾𝜇𝐵𝜇𝑄𝐿 + 43�̄�𝑅𝛾𝜇𝐵𝜇𝑢𝑅 − 23 ̄𝑑𝑅𝛾𝜇𝐵𝜇𝑑𝑅] . (2.76)

In component fields, the leptonic sector can be rewritten as:ℒneutral
leptons = ̄𝜈𝐿𝛾𝜇𝜈𝐿 (−𝑔2𝑊𝜇3 + 𝑔′2 𝐵𝜇)+ ̄𝑒𝐿𝛾𝜇𝑒𝐿 (𝑔2𝑊𝜇3 + 𝑔′2 𝐵𝜇) + 𝑔′ ̄𝑒𝑅𝛾𝜇𝑒𝑅𝐵𝜇, (2.77)

while for quarks, we haveℒneutral
quarks =�̄�𝐿𝛾𝜇𝑢𝐿 (−𝑔2𝑊𝜇3 − 𝑔′6 𝐵𝜇) + ̄𝑑𝐿𝛾𝜇𝑑𝐿 (𝑔2𝑊𝜇3 − 𝑔′6 𝐵𝜇)− 𝑔′ [23�̄�𝑅𝛾𝜇𝑢𝑅𝐵𝜇 − 13 ̄𝑑𝑅𝛾𝜇𝑑𝑅𝐵𝜇] . (2.78)

The Higgs potential is included in the ℒHiggs term and triggers the spontaneous symmetry break-
ing. The term ℒYukawa contains the Yukawa interaction between the Higgs and SM fermions.
These processes are responsible for mass generation and will be studied in the following sections.

2.2.3 Spontaneous Symmetry Breaking

As mentioned earlier, fermions are initially considered massless in the Standard Model. How-
ever, directly introducing mass terms would violate gauge invariance, a fundamental symmetry
of the model. To incorporate mass terms for fermions while preserving gauge invariance, the
Higgs mechanism for Spontaneous Symmetry Breaking (SSB) is employed.
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To understand how it works, we study the scalar sector, described by the Lagrangian density:ℒHiggs = (𝐷𝜇𝐻)† (𝐷𝜇𝐻) − 𝑉 (𝐻), (2.79)

where 𝐻 is the Higgs doublet introduced in (2.58). The spontaneous symmetry breaking of the
electroweak theory occurs when the potential is chosen as:𝑉 (𝐻) = −𝜇2𝐻†𝐻 + 𝜆 (𝐻†𝐻)2 , (2.80)

with 𝜇2 > 0 and 𝜆 > 0. There are infinitely many degenerate vacua characterized by a continuous
phase 𝛼, and the vacuum expectation value (VEV) is given by:⟨𝐻⟩ = 𝑣𝑒𝑖𝛼√2 ( 01 ) . (2.81)

Without loss of generality, we can choose 𝛼 = 0, resulting in:⟨𝐻⟩ = 𝑣√2 ( 01 ) . (2.82)

The value of 𝑣 is determined by the minimum condition:0 = 𝜕𝑉𝜕 (√2Reℎ0)∣𝐻=⟨𝐻⟩ = 𝜕𝜕𝑣 (−12𝜇2𝑣2 + 14𝜆𝑣4) = −𝜇2𝑣 + 𝜆𝑣3. (2.83)

In the broken phase, the only solution is 𝑣2 = 𝜇2𝜆 . This non-zero VEV is what gives us the
so-called spontaneous symmetry breaking.
For the VEV to be compatible with the preservation of U(1)Q after Electroweak Symmetry
Breaking (EWSB), it must be invariant under an infinitesimal U(1) transformation:𝑒𝑖𝑄𝜖⟨𝐻⟩ = (1 + 𝑖𝑄𝜖)⟨𝐻⟩ = ⟨𝐻⟩ (2.84)
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or, equivalently, 𝑄 must annihilate the vacuum 𝑄⟨𝐻⟩ = 0. Explicitly,𝑄⟨𝐻⟩ = (𝑇3 + 𝑌) ⟨𝐻⟩= 12 [( 1 00 −1 ) + ( 1 00 1 )] ( 0𝑣/√2 )= ( 1 00 0 ) ( 0𝑣/√2 ) = 0. (2.85)

As observed, the non-zero VEV of the Higgs field retains the conservation of electric charge,
maintaining the unaltered charge symmetry. However, this VEV breaks the electroweak gauge
symmetry in the following manner:

SU(2)L × U(1)Y → U(1)Q, (2.86)

A convenient parametrization for the scalar doublet is𝐻 = ( ℎ+ℎ0 ) = 𝑒−𝑖𝑇 ′𝑖 𝜉𝑖(𝑥)/𝑣 ( 0𝜌√2 ) , (2.87)

where the 𝑇 ′𝑖 are the three broken generators 𝑇1, 𝑇2 and 𝑇3 − 𝑌, and the fields 𝜉𝑖, 𝜌 are real.
To identify the particle spectrum of the Standard Model, it is advantageous to work in the
unitary gauge, involving unitary gauge transformations 𝑈SU(2) = 𝑒𝑖𝜏𝑖𝜃𝑖(𝑥)/2 and 𝑈U(1) = 𝑒−𝜃/2,
where 𝜃𝑖(𝑥) = 𝜉𝑖(𝑥)/𝑣 and 𝜃 = 𝜉3(𝑥)/𝑣. Under these gauge transformations, the Higgs field 𝐻
transforms as follows: 𝐻 → 𝑈SU(2)𝑈U(1)𝐻 = ( 0𝑣+ℎ√2 ) , (2.88)

where ℎ represents the physical Higgs boson. In this choice of gauge, only the physical degrees
of freedom appear in the Lagrangian. The fields 𝜉𝑖 are the Nambu-Goldstone bosons associated
with the breakdown of 3 out of 4 generators of the electroweak symmetry that are absorbed
by the gauge fields and ultimately become the longitudinal degrees of freedom of the massive
physical vector fields.
It can be shown that in the unitary gauge, the kinetic Lagrangian for 𝐻 takes the formℒkin𝐻 = 12𝜕𝜇ℎ𝜕𝜇ℎ + 18 [2𝑔2𝑊 𝜇+𝑊 −𝜇 + (−𝑔𝑊 𝜇3 + 𝑔′𝐵𝜇)2] (𝑣 + ℎ)2. (2.89)
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Simplifying, we obtain ℒkin𝐻 =12𝜕𝜇ℎ𝜕𝜇ℎ + 𝑔24 (𝑣 + ℎ)2𝑊 𝜇+𝑊 −𝜇+ (𝑔2 + 𝑔′2)8 (𝑣 + ℎ)2 (𝑔𝑊 𝜇3 − 𝑔′𝐵𝜇√𝑔2 + 𝑔′2 )2 . (2.90)

The last term can be further simplified by noticing that:

(𝑔𝑊 𝜇3 − 𝑔′𝐵𝜇√𝑔2 + 𝑔′2 )2 = 1𝑔2 + 𝑔′2 ( 𝑊 𝜇3 𝐵𝜇 ) ( 𝑔2 −𝑔𝑔′−𝑔𝑔′ 𝑔′2 ) ( 𝑊𝜇3𝐵𝜇 ) , (2.91)

which can be diagonalized by an orthogonal transformation of the form:( 𝑊𝜇3𝐵𝜇 ) = ( 𝑐𝑊 𝑠𝑊−𝑠𝑊 𝑐𝑊 ) ( 𝑍𝜇𝐴𝜇 ) , (2.92)

where 𝑐𝑊 ≡ cos 𝜃𝑊, 𝑠𝑊 ≡ sin 𝜃𝑊, and 𝜃𝑊 is the weak (or Weinberg) angle. The weak angle can
be determined explicitly as follows:

(𝑔𝑊 𝜇3 − 𝑔′𝐵𝜇√𝑔2 + 𝑔′2 )2
= 1𝑔2 + 𝑔′2 ( 𝑍𝜇 𝐴𝜇 ) ( 𝑐𝑊 −𝑠𝑊𝑠𝑊 𝑐𝑊 ) ( 𝑔2 −𝑔𝑔′−𝑔𝑔′ 𝑔′2 ) ( 𝑐𝑊 𝑠𝑊−𝑠𝑊 𝑐𝑊 ) ( 𝑍𝜇𝐴𝜇 )= 1𝑔2 + 𝑔′2 ( 𝑍𝜇 𝐴𝜇 )( (𝑔𝑐𝑊 + 𝑔′𝑠𝑊)2 −𝑔𝑔′ cos 2𝜃𝑊 + (𝑔2−𝑔′2)2 sin 2𝜃𝑊−𝑔𝑔′ cos 2𝜃𝑊 + (𝑔2−𝑔′2)2 sin 2𝜃𝑊 (𝑔𝑠𝑊 − 𝑔′𝑐𝑊)2 ) ( 𝑍𝜇𝐴𝜇 ) .

(2.93)

From the diagonal condition, we obtain:

tan 2𝜃𝑊 = 2𝑔𝑔′𝑔2 − 𝑔′2 . (2.94)

By identifying 𝐴𝜇 with the massless photon, we find:

tan 𝜃𝑊 ≡ 𝑡𝑊 = 𝑔′𝑔 . (2.95)
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The solution to both equations is𝑠𝑊 = 𝑔′√𝑔2 + 𝑔′2 , 𝑐𝑊 = 𝑔√𝑔2 + 𝑔′2 . (2.96)

In terms of the physical gauge bosons, the kinetic scalar term becomesℒkin𝐻 = 12𝜕𝜇ℎ𝜕𝜇ℎ + 𝑔24 (𝑣 + ℎ)2𝑊 𝜇+𝑊 −𝜇 + (𝑔2 + 𝑔′2)8 (𝑣 + ℎ)2𝑍𝜇𝑍𝜇. (2.97)

We can read the mass terms for the mediators of the weak interaction𝑔2𝑣24 𝑊 𝜇+𝑊 −𝜇 + 12 (𝑔2 + 𝑔′2) 𝑣24 𝑍𝜇𝑍𝜇 = 𝑀2𝑊𝑊 𝜇+𝑊 −𝜇 + 12𝑀2𝑍𝑍𝜇𝑍𝜇, (2.98)

where: 𝑀2𝑊 = 𝑔2𝑣24 , 𝑀2𝑍 = (𝑔2 + 𝑔′2) 𝑣24 , (2.99)

and these masses are related by 𝑀𝑊 = 𝑐𝑊𝑀𝑍.
The 𝑊 ± and 𝑍 bosons mediate the weak interactions. The 𝑊 ± bosons, discovered in

1983[35], are the charged partners of the weak force, while the 𝑍 boson, also discovered in
1983[36], is the neutral counterpart. Notably, these massive vector bosons are directly linked to
broken symmetries. The strong force carriers (gluons) and photons remain massless, while the
weak force carriers (𝑊 ± and 𝑍 bosons) acquire mass due to spontaneous symmetry breaking
through the Higgs mechanism.

Expressing the Higgs potential in terms of the VEV, we have:𝑉 (𝐻) = 𝜆 (𝐻†𝐻 − 𝑣22 )2 − 𝜆𝑣44 , (2.100)

which, in the unitary gauge, becomes:𝑉 (𝐻) = 𝜆 (𝑣2ℎ2 + 𝑣ℎ3 + ℎ44 ) − 𝜆𝑣44 . (2.101)

Analyzing the quadratic term in ℎ, we can determine the squared mass of the physical scalar:12𝑀2𝐻ℎ2 = 𝜆𝑣2ℎ2 ⇒ 𝑀2𝐻 = 2𝜆𝑣2. (2.102)

This mass corresponds to the Higgs boson observed in 2012[37]. The measured value is 𝑀𝐻 =125.25 ± 0.17 GeV[33].
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2.2.4 Fermion masses

To unravel the mechanism behind mass generation for Standard Model fermions, a careful exam-
ination of the Yukawa interaction term is essential. These interactions encapsulate all possible
contractions between scalars and fermions while preserving the defining symmetries of the model.
The Yukawa interactions are embodied in the Lagrangian term:ℒYuk = − �̄�𝐿𝐻𝑦𝑒𝑒𝑅 − ̄𝑒𝑅𝑦†𝑒𝐻†𝐿𝐿 − �̄�𝐿𝐻𝑦𝑑𝑑𝑅 − ̄𝑑𝑅𝑦†𝑑𝐻†𝑄𝐿− �̄�𝐿�̃�𝑦𝑢𝑢𝑅 − �̄�𝑅𝑦†𝑢�̃�†𝑄𝐿. (2.103)

Here, the matrices 𝑦𝑒, 𝑦𝑢, and 𝑦𝑑 are 3 × 3 constant complex matrices. Additionally, �̃� denotes
the charge conjugate of 𝐻, defined as:�̃� = 𝑖𝜏2𝐻∗ = ( ℎ0−ℎ− ) , ℎ− = ℎ+∗, (2.104)

where 𝑌 (�̃�) = −1/2 represents the hypercharge of the charge conjugate scalar field �̃�.

After EWSB, mass terms are induced for all charged fermions in the model. As usual, the
mass spectrum is easily found in unitary gauge, whereℒYuk = −�̄�𝐿𝐻𝑦𝑒𝑒𝑅 − �̄�𝐿𝐻𝑦𝑑𝑑𝑅 − �̄�𝐿�̃�𝑦𝑢𝑢𝑅 + h.c.= − 1√2 ( ̄𝜈𝐿 ̄𝑒𝐿 ) ( 0𝑣 + ℎ ) 𝑦𝑒𝑒𝑅 − 1√2 ( �̄�𝐿 ̄𝑑𝐿 ) ( 0𝑣 + ℎ ) 𝑦𝑑𝑑𝑅− 1√2 (�̄�𝐿 ̄𝑑𝐿) ( 𝑣 + ℎ0 ) 𝑦𝑢𝑢𝑅 + h.c.= − ̄𝑒𝐿 𝑦𝑒(𝑣 + ℎ)√2 𝑒𝑅 − ̄𝑑𝐿 𝑦𝑑(𝑣 + ℎ)√2 𝑑𝑅 − �̄�𝐿 𝑦𝑢(𝑣 + ℎ)√2 𝑢𝑅 + h.c.

(2.105)

In general, the mass matrices for the charged fermions in the Standard Model are given by:𝑀𝑒 = 𝑦𝑒 𝑣√2, 𝑀𝑑 = 𝑦𝑑 𝑣√2, 𝑀𝑢 = 𝑦𝑢 𝑣√2. (2.106)

These mass matrices are generally non-diagonal 3 × 3 complex matrices, implying that the
interaction states and the states with well-defined masses (mass eigenstates) do not necessarily
coincide. This means that the fermion fields that participate in the weak interactions, known
as the interaction states, are not the same as the fields that have definite masses, known as the
mass eigenstates. In the case of neutrinos, which were considered to be massless for a long time,
it is possible to redefine the fields in a way that makes the mass matrix 𝑀𝑒 diagonal without
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any physical implications.
Transitioning to quark Yukawa interactions, let’s consider the Standard Model fields in the
interaction basis, denoted by a superscript 0. Using this notation, the quark Yukawa interactions
in the unitary gauge can be expressed as:ℒquark

Yuk = −�̄�0𝐿𝑀𝑢 (1 + ℎ𝑣 ) 𝑢0𝑅 − ̄𝑑0𝐿𝑀𝑑 (1 + ℎ𝑣 ) 𝑑0𝑅 + h.c. (2.107)

To identify the physical fields, we need to diagonalize the complex matrices 𝑀𝑢 and 𝑀𝑑 through
a bi-unitary transformation: 𝑀𝑢 = 𝑉 𝑢𝐿 𝑚𝑢𝑉 𝑢†𝑅 , 𝑀𝑑 = 𝑉 𝑑𝐿 𝑚𝑑𝑉 𝑑†𝑅 , (2.108)

where 𝑉 𝑢𝐿,𝑅 and 𝑉 𝑑𝐿,𝑅 are 3 × 3 unitary matrices, and 𝑚𝑢, 𝑚𝑑 are diagonal matrices with non-
negative entries. This bi-unitary transformation defines a basis for the mass eigenstate fields
as: 𝑢𝐿,𝑅 ≡ 𝑉 𝑢𝐿,𝑅†𝑢0𝐿,𝑅, 𝑑𝐿,𝑅 ≡ 𝑉 𝑑𝐿,𝑅†𝑑0𝐿,𝑅. (2.109)

In this new basis, the quark Yukawa interactions simplify to:ℒquark
Yuk = −�̄�𝐿𝑚𝑢 (1 + ℎ𝑣 ) 𝑢𝑅 − ̄𝑑𝐿𝑚𝑑 (1 + ℎ𝑣 ) 𝑑𝑅 + h.c. (2.110)

We can now express the quark gauge interactions in terms of the mass eigenstates. For the
neutral currents, the Lagrangian is given by:ℒneutral

quarks = [−𝑒𝐽𝜇𝑄𝐴𝜇 − 𝑔2𝑐𝑊 𝐽𝜇𝑍𝑍𝜇]
quarks

, (2.111)

where 𝐽𝜇𝑄∣
quarks

= 23 �̄�𝛾𝜇𝑢 − 13 ̄𝑑𝛾𝜇𝑑 represents the electromagnetic current and 𝐽𝜇𝑍 |quarks =�̄�𝐿𝛾𝜇𝑢𝐿 − ̄𝑑𝐿𝛾𝜇𝑑𝐿 − 2𝑠2𝑊𝐽𝜇𝑄∣
quarks

represents the weak neutral current.

This implies that both the electromagnetic current and the weak neutral current have the same
form in the mass and flavor basis. As a result, both currents are flavor diagonal and family
universal. This feature, known as the GIM (Glashow-Iliopoulos-Maiani) mechanism[38], was
originally introduced to suppress unobserved flavor-changing effects and predict the existence of
the charm quark. Without the GIM mechanism, the 𝑑 and 𝑠 quarks would not have the same
electroweak quantum numbers, leading to flavor-changing-neutral currents.
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In contrast, for the charged currents, the Lagrangian is given by:ℒcharged
quarks = − 𝑔√2 [ ̄𝑑0𝐿𝛾𝜇𝑢0𝐿𝑊 −𝜇 + �̄�0𝐿𝛾𝜇𝑑0𝐿𝑊 +𝜇 ]= − 𝑔√2 [ ̄𝑑𝐿𝛾𝜇𝑉 𝑑†𝐿 𝑉 𝑢𝐿 𝑢𝐿𝑊 −𝜇 + �̄�𝐿𝛾𝜇𝑉 𝑢†𝐿 𝑉 𝑑𝐿 𝑑𝐿𝑊 +𝜇 ]≡ − 𝑔√2 [ ̄𝑑𝐿𝛾𝜇𝑉 †

CKM𝑢𝐿𝑊 −𝜇 + �̄�𝐿𝛾𝜇𝑉CKM𝑑𝐿𝑊 +𝜇 ] , (2.112)

where we have introduced the unitary Cabibbo-Kobayashi-Maskawa (CKM) matrix[39, 40]:

𝑉CKM = 𝑉 𝑢†𝐿 𝑉 𝑑𝐿 = ⎛⎜⎝ 𝑉𝑢𝑑 𝑉𝑢𝑠 𝑉𝑢𝑏𝑉𝑐𝑑 𝑉𝑐𝑠 𝑉𝑐𝑏𝑉𝑡𝑑 𝑉𝑡𝑠 𝑉𝑡𝑏 ⎞⎟⎠ (2.113)

which describes the mismatch between the unitary transformations relating the weak and mass
eigenstates for the up and down quarks. By convention, we absorb the action of 𝑉CKM on 𝑑-type
quarks, which allows us to write:ℒcharged

quarks = − 𝑔√2 [(�̄�𝐿𝛾𝜇𝑑mix𝐿 + ̄𝑐𝐿𝛾𝜇𝑠mix𝐿 + ̄𝑡𝐿𝛾𝜇𝑏mix𝐿 ) 𝑊 +𝜇 + h.c. ] , (2.114)

where we define the mixed states:⎛⎜⎝ 𝑑𝑠𝑏 ⎞⎟⎠mix

𝐿 = ⎛⎜⎝ 𝑉𝑢𝑑 𝑉𝑢𝑠 𝑉𝑢𝑏𝑉𝑐𝑑 𝑉𝑐𝑠 𝑉𝑐𝑏𝑉𝑡𝑑 𝑉𝑡𝑠 𝑉𝑡𝑏 ⎞⎟⎠ ⎛⎜⎝ 𝑑𝑠𝑏 ⎞⎟⎠𝐿 . (2.115)

The CKM matrix, 𝑉CKM, can be parametrized using three mixing angles and one 𝐶𝑃 violating
complex phase, which encode the flavor-changing weak decays of quarks and play a crucial role
in flavor physics phenomenology. The most popular parametrization of the CKM matrix, as
provided by the Particle Data Group (PDG)[33], is given by:

𝑉CKM = ⎛⎜⎝ 1 0 00 𝑐23 𝑠230 −𝑠23 𝑐23 ⎞⎟⎠ ⎛⎜⎝ 𝑐13 0 𝑠13𝑒−𝑖𝛿130 1 0−𝑠13𝑒+𝑖𝛿13 0 𝑐13 ⎞⎟⎠ ⎛⎜⎝ 𝑐12 𝑠12 0−𝑠12 𝑐12 00 0 1 ⎞⎟⎠𝑐12𝑐13= ⎛⎜⎝ 𝑠12𝑐13 𝑠13𝑒−𝑖𝛿13−𝑠12𝑐23 − 𝑐12𝑠23𝑠13𝑒𝑖𝛿13 𝑐12𝑐23 − 𝑠12𝑠23𝑠13𝑒𝑖𝛿13 𝑠23𝑐13𝑠12𝑠23 − 𝑐12𝑐23𝑠13𝑒𝑖𝛿13 −𝑐12𝑠23 − 𝑠12𝑐23𝑠13𝑒𝑖𝛿13 𝑐23𝑐13 ⎞⎟⎠ , (2.116)

where 𝑠𝑖𝑗 ≡ sin 𝜃𝑖𝑗, and 𝑐𝑖𝑗 ≡ cos 𝜃𝑖𝑗 represent the mixing angles, and 𝛿13 is a 𝐶𝑃 violating
phase.

27



2.2.5 Radiative Corrections and Anomaly Cancellation

Feynman diagrams devoid of loops represent tree-level processes. However, at higher orders,
corrections known as radiative corrections come into play. In such cases, the corresponding
Feynman diagrams involve loops. Under certain circumstances, these radiative corrections have
the potential to disrupt the symmetries inherent in classical equations of motion. A classical
symmetry affected by quantum effects is deemed anomalous.

Noether’s theorem establishes that continuous global symmetries imply the existence of con-
served currents. However, when a symmetry becomes anomalous, it ceases to be a genuine
symmetry, and the associated current is no longer conserved. In the realm of unitary quantum
theories, gauged symmetries must be anomaly-free. This requirement holds true in the SM,
where the electric charge is compelled to be quantized, and the charges of quarks and leptons
are interrelated.

Anomalies linked to gauge bosons are referred to as gauge anomalies. In cases where a
symmetry is not gauged, anomalies pose no issues. Global anomalies, such as those associated
with baryon and lepton number conservation, do not result in inconsistencies within the SM.

For chiral fermions, the cancellation of chiral anomalies is imperative to ensure the consis-
tency of the theory. Symmetries under which left and right-handed fields transform identically
are termed vector symmetries, while those transforming with opposite charges are referred to as
chiral symmetries. The currents associated with these symmetries are denoted as 𝐽𝜇 = 𝜓𝛾𝜇𝜓
and 𝐽𝜇5 = 𝜓𝛾𝜇𝛾5𝜓, known as the vector current and axial current, respectively.

At the one-loop level, in the presence of a gauge coupling to fermions, 𝐽𝜇5 is not conserved,
leading to an anomalous breaking of chiral symmetry[41]. For non-abelian gauge theories, the
currents associated with gauge fields take the form 𝐽𝑎𝜇 = ∑𝜓 𝜓𝑖𝑇 𝑎𝑖𝑗𝛾𝜇𝜓𝑗, where 𝑇 𝑎𝑖𝑗 represents
the group generators.

From the summation of two triangle diagrams resulting in the chiral anomaly, terms of the
form

tr [𝑇 𝑎𝑇 𝑏𝑇 𝑐] = 12 tr [[𝑇 𝑎, 𝑇 𝑏] 𝑇 𝑐] + 12 tr [{𝑇 𝑎, 𝑇 𝑏} 𝑇 𝑐] = 𝑖12𝑇𝑅𝑓𝑎𝑏𝑐 + 14𝑑𝑎𝑏𝑐𝑅 (2.117)

can be derived. It can be shown that

tr [𝑇 𝑎𝑅 {𝑇 𝑏𝑅, 𝑇 𝑐𝑅}] = 𝐴(𝑅) tr [𝑇 𝑎 {𝑇 𝑏, 𝑇 𝑐}] ≡ 𝐴(𝑅)𝑑𝑎𝑏𝑐, (2.118)
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where 𝐴(𝑅) is the anomaly coefÏcient. The divergence of the current is given by

𝜕𝛼𝐽𝑎𝛼(𝑥) = (∑
left

𝐴 (𝑅𝑙) − ∑
right

𝐴 (𝑅𝑟)) 𝑔2128𝜋2 𝑑𝑎𝑏𝑐𝜀𝜇𝜈𝛼𝛽𝐹 𝑏𝜇𝜈𝐹 𝑐𝛼𝛽 (2.119)

Upon considering each fermion within the theory, the diverse contributions must mutually cancel
for every conceivable combination of generators from each gauge symmetry, encompassing the
mixing of different gauge symmetries. In the SM, any anomaly with precisely one factor of SU(2)
or SU(3) is effectively canceled.

In the context of combinations involving two SU(3)𝑐 bosons and one U(1)𝑌 boson, the
anomaly arises solely from quarks. Utilizing the property tr {𝑇 𝑎𝑇 𝑏} = 12𝛿𝑎𝑏, we can deter-
mine that

tr [𝑇 𝑎 {𝑇 𝑏, 𝑌}] = 6𝑌𝑄 − 3𝑌𝑢 − 3𝑌𝑑 = 6 ⋅ 16 − 3 ⋅ 23 − 3 ⋅ −13 = 0. (2.120)

For the SU(2)2 U(1) anomaly, contributions only emerge from left-handed fields, resulting in

tr [𝜏𝑎 {𝜏𝑏, 𝑌}] = 2𝑌𝐿 + 6𝑌𝑄 = 2 ⋅ −12 + 6 ⋅ 16 = 0. (2.121)

Addressing the U(1)3 anomaly, the expression becomes:(2𝑌 3𝐿 − 𝑌 3𝑒 − 𝑌 3𝜈 )+3 (2𝑌 3𝑄 − 𝑌 3𝑢 − 𝑌 3𝑑 ) = 2 (−12)3 −(−1)3 +3(2)(16)3 −3 (23)3 −3 (−13)3 = 0.
(2.122)

Ensuring the cancellation of graviton anomalies in the SM focuses on grav2 U(1)𝑌:(2𝑌𝐿 − 𝑌𝑒 − 𝑌𝜈) + 3 (2𝑌𝑄 − 𝑌𝑢 − 𝑌𝑑) = 2 (−12) − (−1) + 3 (2(16) − (23) − (−13)) = 0.
(2.123)

Thus, every anomalous contribution vanishes, ensuring the consistency of the SM.
It is noteworthy that baryon number, where quarks have 𝐵 = 1 and leptons 𝐵 = 0, and

lepton number, where quarks have 𝐿 = 0 and leptons 𝐿 = 1, are anomalous in the SM. However,
the global symmetry 𝐵 − 𝐿, with quarks having 𝐵 − 𝐿 = 13 and leptons 𝐵 − 𝐿 = −1, remains
non-anomalous.

2.2.6 The Lorentz Group

This section presupposes a basic understanding of special relativity, omitting certain definitions
and focusing on aspects pertinent to subsequent chapters. The Lorentz group constitutes the
most comprehensive set of transformations that preserves the Minkowski metric: Λ𝑇𝑔Λ = 𝑔.
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Within this group, fundamental transformations include rotations and boosts. Any Lorentz
group element can be uniquely expressed as:Λ = exp (−𝑖𝜃𝑖𝐽𝑖 − 𝑖𝛽𝑖𝐾𝑖), (2.124)

where 𝐽𝑖 represents the generators of rotations, and 𝐾𝑖 denotes the generators of boosts.

Two discrete Lorentz transformations, known as parity and time reversal, are noteworthy.
The parity transformation, denoted as 𝑃, entails changing the sign of spatial coordinates while
leaving the time coordinate unchanged:𝑃 ∶ (𝑡, 𝑥, 𝑦, 𝑧) → (𝑡, −𝑥, −𝑦, −𝑧). (2.125)

Conversely, the time reversal transformation, denoted as 𝑇, involves changing the sign of the
time coordinate while keeping spatial coordinates constant:𝑇 ∶ (𝑡, 𝑥, 𝑦, 𝑧) → (−𝑡, 𝑥, 𝑦, 𝑧). (2.126)

The collective group of translations and Lorentz transformations is referred to as the Poincaré
group, denoted as ISO(1, 3). The Lorentz group itself is sometimes denoted as O(1, 3).

In relativistic quantum field theory, particles are described by irreducible unitary representa-
tions of the Poincaré group. The Lie algebra of a group is defined by the commutation relations
among its generators. For the Lorentz group, the generators of rotations and boosts satisfy the
following commutation relations: [𝐽𝑖, 𝐽𝑗] = 𝑖𝜖𝑖𝑗𝑘𝐽𝑘,[𝐽𝑖, 𝐾𝑗] = 𝑖𝜖𝑖𝑗𝑘𝐾𝑘,[𝐾𝑖, 𝐾𝑗] = −𝑖𝜖𝑖𝑗𝑘𝐽𝑘. (2.127)

The generators of the Lorentz group constitute the algebra corresponding to the part connected
to the identity, referred to as the proper orthochronous Lorentz group (O+(1, 3)). The proper
Lorentz group SO(1, 3) encompasses elements with a determinant equal to 1.

Scalar fields, denoted as 𝜙(𝑥), are functions of spacetime that remain invariant under Lorentz
transformations, preserving their form. The transformation of a scalar field under a Lorentz
transformation Λ𝜇𝜈 is expressed as: 𝜙(𝑥) → 𝜙((Λ−1)𝜇𝜈 𝑥𝜈). (2.128)
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In contrast, 4-vectors 𝑉 𝜇 transform under Lorentz transformations as:𝑉 𝜇 → Λ𝜇𝜈 𝑉 𝜈. (2.129)

The generators 𝐴𝑖 and 𝐵𝑖 are derived as linear combinations of the generators of rotations (𝐽𝑖)
and boosts (𝐾𝑖): 𝐴𝑖 ≡ 12(𝐽𝑖 + 𝑖𝐾𝑖), 𝐵𝑖 ≡ 12(𝐽𝑖 − 𝑖𝐾𝑖). (2.130)

These generators satisfy the commutation relations:[𝐴𝑖, 𝐴𝑗] = 𝑖𝜖𝑖𝑗𝑘𝐴𝑘,[𝐵𝑖, 𝐵𝑗] = 𝑖𝜖𝑖𝑗𝑘𝐵𝑘,[𝐴𝑖, 𝐵𝑗] = 0. (2.131)

These commutation relations illustrate that the Lie algebra for the Lorentz group can be de-
composed into two commuting subalgebras:

so(1, 3) = su(2) ⊕ su(2). (2.132)

Each irreducible representation of su(2) is characterized by a half-integer value 𝑗, acting on a
vector space with 2𝑗 + 1 basis elements. Accordingly, irreducible representations of the Lorentz
group are defined by two half-integer values denoted as 𝑎 and 𝑏, where the (𝑎, 𝑏) representation
has (2𝑎 + 1)(2𝑏 + 1) degrees of freedom.

For example, there exist two complex representations of 𝐽 = 12 denoted as (12 , 0) and (0, 12).
The Pauli matrices, 𝜎𝑖, satisfy the commutation relations:[𝜎𝑖, 𝜎𝑗] = 2𝑖𝜖𝑖𝑗𝑘𝜎𝑘. (2.133)

Rescaling the Pauli matrices, we get: [𝜎𝑖2 , 𝜎𝑗2 ] = 𝑖𝜖𝑖𝑗𝑘 𝜎𝑘2 . (2.134)

The generators of the Lorentz algebra so(1, 3) in the (12 , 0) and (0, 12) representations can be
expressed as: (12, 0) ∶ A = 12𝜎𝜎𝜎, B = 0, (2.135)(0, 12) ∶ A = 0, B = 12𝜎𝜎𝜎. (2.136)
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It is also true that the generators of rotations are given by J = A + B, and the generators of
boosts are K = 𝑖(B − A). Consequently, we find:(12, 0) ∶ J = 12𝜎𝜎𝜎, K = − 𝑖2𝜎𝜎𝜎,(0, 12) ∶ J = 12𝜎𝜎𝜎, K = 𝑖2𝜎𝜎𝜎. (2.137)

The elements of the vector space on which the spin-12 representations act are referred to as
spinors. In this context, the (12 , 0) spinors are known as left-handedWeyl spinors, while the (0, 12)
spinors are termed right-handed Weyl spinors. Fields are spinor-valued functions of spacetime,
represented as: 𝜓𝑅(𝑥) = ( 𝜓1(𝑥)𝜓2(𝑥) ) , (2.138)

for the (0, 12) representation. Similarly, we denote 𝜓𝐿(𝑥) for the (12 , 0) representation. The (12 , 0)
representation acts on 𝜓𝐿 as 𝜓𝐿 → 𝑒− 12 (𝑖𝜃𝜃𝜃⋅𝜎𝜎𝜎+𝛽𝛽𝛽⋅𝜎)𝜓𝐿, (2.139)

and similarly for 𝜓𝑅: 𝜓𝑅 → 𝑒− 12 (𝑖𝜃𝜃𝜃⋅𝜎𝜎𝜎−𝛽𝛽𝛽⋅𝜎)𝜓𝑅. (2.140)

These two spinors can be combined into a four-component object known as a Dirac spinor:𝜓 = ( 𝜓𝐿𝜓𝑅 ) . (2.141)

Armed with the concepts and tools introduced so far, the next chapter will explore mass gener-
ation models for neutrinos, which is an intriguing topic in particle physics. Various mechanisms
have been proposed to elucidate the tiny but non-zero neutrino masses observed in experiments.
But first, a quick review of dark matter is presented.

2.3 Dark Matter

This section draws heavily from the insights presented in Majumdar’s book[42]. A remarkable
aspect of our universe is the prevalence of dark matter (DM), constituting approximately 26% of
its total content. The term “dark matter” originates from the fact that this substance behaves
like matter from the point of view of the Friedmann equations, in the sense that it does not
apply pressure, but it is not charged under electromagnetic interaction, and therefore it is
not observable. The model to be presented in this thesis introduces candidates for dark matter,
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prompting a concise exploration of this mysterious entity. Given the considerable efforts invested
in developing theories to unravel the nature of dark matter, it is crucial to address why there
exists a high level of certainty regarding its existence. Numerous pieces of evidence support the
existence of dark matter. In the subsequent sections, we will briefly explore key proofs that
contribute to the compelling argument supporting the existence of dark matter.

2.3.1 Evidence of dark matter

An apparent incongruity emerges when comparing the observable mass and the gravitational
mass in the universe, hinting at the existence of a substantial unseen mass. In galaxies, stars
exhibit a relatively uniform circular motion around their center. This circular motion’s velocity
seemingly precisely counterbalances the gravitational force directed towards the galactic center,
maintaining the stars in their circular orbits. For a star positioned at distance 𝑟 from the galactic
center, with a circular velocity 𝑣(𝑟), the equilibrium of gravitational and centrifugal forces is
expressed as 𝑚𝑣(𝑟)2𝑟 = 𝐺𝑚𝑟2 ∫𝑟0 𝜌(𝑟′)𝑑𝑟′, (2.142)

where 𝜌(𝑟) denotes the galaxy’s mass density. The rotation curve, indicating the radial depen-
dence of stellar orbital velocities, reveals an unexpected observation. While the mass density
is anticipated to decrease with distance, empirical measurements of rotation curves for various
galaxies show a constant velocity for large 𝑟, suggesting the presence of a substantial unseen
mass forming a surrounding halo.

Another compelling piece of evidence for dark matter arises from the study of galaxy clusters,
gravitational bound groups of galaxies. The inference of dark matter within these clusters
involves estimating their mass based on gravitational dynamics, juxtaposed with mass estimates
derived from luminosity. Typically, the virial theorem is employed to gauge the gravitating
mass, revealing a discrepancy when compared to the luminous mass. A historical instance
involves Zwicky’s 1933 computation[43] of the mass-to-luminosity ratio for the Coma cluster
and individual galaxies, exposing a cluster ratio about 50 times greater than that of any single
galaxy.

Einstein’s general relativity describes the concept of gravitational lensing, where light bends
in the presence of gravitating mass. Astronomical observations of this phenomenon, without
concurrent detection of luminous mass, point to the existence of dark matter. The scrutiny of
the cluster 1E0657-56, colloquially known as the bullet cluster, stands as a noteworthy testament
to dark matter. In this case, the utilization of weak and strong lensing observations helped
delineate the distribution of dark matter.
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In addition to astronomical evidence, significant cosmological insights into DM arise from
pivotal moments in the early universe’s evolution. Observations related to Big Bang Nucleosyn-
thesis (BBN), the Cosmic Microwave Background (CMB)[44], energy density scaling of matter,
radiation, the cosmological constant, and supernovae type-Ia observations[45] collectively high-
light that ordinary baryonic matter alone cannot account for the entirety of the universe’s mass.
Moreover, the inclusion of DM in the cosmic energy budget proves essential for comprehending
structure formation and evolution.

2.3.2 Dark matter candidates

While the precise nature of dark matter remains elusive, categorization is possible based on its
potential production mechanisms, the particle characteristics of its constituents, or the mass of
DM candidates. Essential criteria for a viable DM candidate, as outlined by Taoso et al.[46], in-
clude neutrality under electromagnetic and strong interactions, compliance with self-interaction
constraints, stability over timescales comparable to the universe’s age, and consistency with the
appropriate relic density.

Dark matter can be classified based on whether it underwent thermal or non-thermal produc-
tion in the early universe. Thermal production involves DM generation through cosmic plasma
collisions during the radiation-dominated era. In contrast, non-thermal dark matter particles
may originate from alternative mechanisms, such as the decay of massive particles or specific
symmetry conditions.

DM candidates can be categorized based on their mass and velocity characteristics. When
DM exhibits relativistic speeds, it falls into the category of hot dark matter, possessing a mass
less than the Universe’s temperature at a relevant time. Conversely, if the DM mass exceeds the
temperature of the universe at freeze-out, it is termed cold dark matter (CDM).

Within the Standard Model, at least two of the known three neutrino species are non-
relativistic and contribute to the universe’s matter content, qualifying them as potential DM
candidates. However, their transition to a non-relativistic state occurred at very late times,
impacting the radiation budget crucial for structure formation. As a result, they are considered
hot DM. Observations of structures discount the possibility that neutrinos constitute the entire
DM abundance, despite contributing a small fraction. This limitation prompts the search for DM
candidates beyond the SM. Popular alternatives include axions, sterile neutrinos, and Weakly
Interacting Massive Particles (WIMPs).

A noteworthy example of non-thermal DM is the axion, introduced as a resolution to the
strong-CP problem. The Peccei-Quinn mechanism not only addressed the strong-CP problem
but also predicted a new massive particle—the QCD axion. While this specific axion variant
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has been excluded by particle collider experiments, alternative QCD axion models remain viable
candidates for dark matter.

Sterile neutrinos represent another potential dark matter (DM) candidate. These particles
lack any charge under SM interactions and, in the simplest scenario, only interact with SM
particles through weak interactions. This interaction is suppressed by their mixing angle with
active neutrinos, and sterile neutrinos are exempt from self-interactions. Typically, sterile neu-
trinos are anticipated to have a mass on the order of keV and could generate x-rays through
radiative decays of active neutrinos. However, cosmological and x-ray observations have imposed
constraints on the allowed parameter space for sterile neutrinos to comprise the DM.

Weakly Interacting Massive Particles (WIMPs) offer another avenue for DM candidates.
These generic massive particles, besides gravitational interactions, exhibit only weak coupling
to the Standard Model[47]. Initially, WIMPs were postulated with an interaction strength
comparable to the weak interaction in the SM[48]. This assumption, termed “The WIMP
Miracle”, relied on the coincidence that a massive particle with thermal relic abundance and
an interaction cross-section on the scale of the SM weak interaction would naturally yield the
correct relic abundance order of magnitude. The term “weakly interacting” is now applied more
broadly, encompassing particles that exhibit weak coupling to SM particles, lack direct photon
coupling, and were thermally produced in the early universe, with their relic density determined
by their freeze-out abundance. Given the diversity of particle DM candidates within the WIMP
category, a more comprehensive discussion on this candidate follows.

2.3.3 WIMP Dark Matter and Relic Density

If dark matter candidates were in thermal and chemical equilibrium in the early Universe, they
underwent decoupling from the universal plasma when the interaction rates became less than
the expansion rate of the Universe, leading to a constant comoving density for such particles. In
this context, Weakly Interacting Massive Particles (WIMPs) emerge as interesting dark matter
candidates. The annihilation cross-section, deduced from experimental assessments of dark
matter abundance (relic density), aligns with the expected range for weak interaction cross-
sections.

WIMPs, once in chemical and thermal equilibrium at sufÏciently high temperatures in the
early Universe, were thermally produced through collisions in the thermal cosmic plasma. This
occurred when they were generated in particle-antiparticle pairs. Subsequently, these particle-
antiparticle pairs could annihilate, forming Standard Model particles in a reverse reaction. Ini-
tially, these two processes were in equilibrium, denoting the dark matter particle as 𝜒 and its
number density as 𝑛𝜒, resulting in 𝑛𝜒 − 𝑛𝜒 = 0.
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Expressing the number density of such particles in terms of the Boltzmann distribution
function for temperatures 𝑇 and mass 𝑚𝜒:𝑛𝜒 − �̄�𝜒 ∼ (𝑚𝜒𝑇2𝜋 )3/2 𝑒−𝑚𝜒/𝑇. (2.143)

As the annihilation rate drops just below the expansion rate, the number of these particles in
a comoving volume stabilizes. This phase, termed “freeze-out”, results in the particles lingering
as relics, with the temperature at which this occurs known as the “freeze-out temperature” for
that particle species. The relic density subsequent to freeze-out is dependent on the annihilation
cross-section.

In the calculation of relic densities for thermally produced DM candidates, the Boltzmann
equation needs to be solved:

d𝑛𝜒
d𝑡 = −3𝐻𝑛𝜒 − ⟨𝜎𝑣⟩ (𝑛2𝜒 − (𝑛𝜒)2𝑒𝑞) , (2.144)

where 𝐻 denotes the Hubble constant, and ⟨𝜎𝑣⟩ represents the thermally averaged product of the
annihilation cross-section and the relative velocity between the DM particles. This parameter
serves as a bridge between Cosmology and Particle Physics, dictating the DM density post
freeze-out. Once the Boltzmann equation is solved, the estimated DM density can be expressed
as[49]: Ω𝜒ℎ2 ≈ 3 × 10−27 [ cm3 s−1]⟨𝜎𝑣⟩ . (2.145)

The measured value for this quantity is Ω𝜒ℎ2 = 0.11425 ± 0.00311[50]. This equation provides
a means to test the WIMP hypothesis for a given DM particle candidate.

Current observations strongly indicate that dark matter is cold. Consequently, relativistic
particles cannot account for the DM abundance within the present cosmological framework.
Even if we disregard the relativistic nature of neutrinos, the neutrino relic density remains
significantly lower than the DM relic density. Hence, the abundance of dark matter in the
universe cannot be justified by the Standard Model.
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The recognition of neutrinos dates back to the 1956 Cowan-Reines neutrino experiment[51].
As stated in the last chapter, neutrinos remain massless in the SM even after the spontaneous
symmetry breaking. In the present day, we identify three distinct types of neutrinos, all elec-
trically neutral and exclusively interacting through the weak force. This chapter delves into
the intriguing realm of neutrino masses. Despite being predicted to be at least six orders of
magnitude smaller than the next lightest standard model fermion, experimental evidence has
unequivocally demonstrated that neutrinos possess tiny but non-zero masses.

The first section of this chapter elucidates the theoretical underpinnings of neutrinos, shed-
ding light on the experiments that have substantiated their minute yet non-negligible masses. We
explore various mechanisms proposed to account for the origin of neutrino masses, recognizing
that their massiveness necessitates physics beyond the Standard Model (BSM).

In the subsequent section, we introduce an extension to the Standard Model that not only
accommodates neutrino masses but also posits a candidate for dark matter.

3.1 Introduction to neutrino masses

We begin this section with some basic theory about fermions to introduce the concept of chirality,
needed to approach the discussion of whether neutrinos are Dirac or Majorana particles. We
continue this section with the concept of neutrino oscillation, which requires neutrinos to be
massive and that their masses are non-degenerate. Afterwards, the most popular mechanisms
for neutrino mass generation are presented.

3.1.1 Chirality and fermions

The Dirac equation is a relativistic wave equation that describes the behavior of fermionic
particles with spin-1/2, such as electrons. It is given by:(𝑖𝛾𝜇𝜕𝜇 − 𝑚)𝜓 = 0, (3.1)

where the 𝛾𝜇 are the 4×4 gamma matrices, namely a Dirac representation of the Clifford algebra{𝛾𝜇, 𝛾𝜈} = 2𝑔𝜇𝜈. (3.2)

In the Weyl (or chiral) representation, the gamma matrices take the following form:𝛾0 = ( 𝟙𝟙 ) , 𝛾𝑖 = ( 0 𝜎𝑖−𝜎𝑖 0 ) . (3.3)
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The Dirac matrices can also be expressed in an alternative form as:𝛾𝜇 = ( 0 𝜎𝜇𝜎𝜇 0 ) . (3.4)

The Dirac equation is Lorentz invariant, and if 𝜓 satisfies the Dirac equation, it automati-
cally satisfies the Klein-Gordon equation, which is a relativistic wave equation describing spin-0
particles: (𝑖𝛾𝜇𝜕𝜇 + 𝑚)(𝑖𝛾𝜈𝜕𝜈 − 𝑚)𝜓 = (−𝛾𝜇𝛾𝜈𝜕𝜇𝜕𝜈 + 𝑚2 − 𝑖𝑚(𝛾𝜇𝜕𝜇 + 𝛾𝜈𝜕𝜈) − 𝑚2) 𝜓= (−12 {𝛾𝜇, 𝛾𝜈} 𝜕𝜇𝜕𝜈 − 12 [𝛾𝜇, 𝛾𝜈] 𝜕𝜇𝜕𝜈 − 𝑚2) 𝜓= − (𝜕𝜇𝜕𝜇 + 𝑚2) 𝜓 = 0. (3.5)

The Dirac adjoint, denoted as 𝜓, is a useful construct in combining spinors to form Lorentz
invariant quantities. It is defined as the Hermitian conjugate of the Dirac spinor 𝜓 multiplied
by the gamma matrix 𝛾0: 𝜓 ≡ 𝜓†𝛾0. (3.6)

Using the Dirac adjoint, we can construct various Lorentz invariant quantities, such as 𝜓𝛾𝜇𝜓,𝜓𝜓𝜇𝜓𝜈𝜓, and 𝜓𝜕𝜇𝜓. These expressions remain invariant under Lorentz transformations due to
the proper combination of Dirac spinors and gamma matrices. The Dirac Lagrangian, given byℒ = 𝜓 (𝑖𝛾𝜇𝜕𝜇 − 𝑚) 𝜓, (3.7)

leads directly to the Dirac equation when the Euler-Lagrange equation is applied. The general
solution to the Dirac equation is a complex 4-vector transforming under the spin representation
of the Lorentz group. However, this solution is not irreducible.
The gamma matrix 𝛾5 is defined as:𝛾5 ≡ 𝑖𝛾0𝛾1𝛾2𝛾3 = − 𝑖4!𝜖𝜇𝜈𝜌𝜎𝛾𝜇𝛾𝜈𝛾𝜌𝛾𝜎, (3.8)

where 𝜖𝜇𝜈𝜌𝜎 is the completely antisymmetric tensor with 𝜖0123 = −𝜖0123. In the chiral represen-
tation, 𝛾5 is diagonal: 𝛾5 = ( −𝟙 00 𝟙 ) , (3.9)

and it satisfies several important properties:

• Hermiticity: (𝛾5)† = 𝛾5,
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• Idempotency: (𝛾5)2 = 𝟙,
• Anti-commutation with gamma matrices: {𝛾5, 𝛾𝜇} = 0.

The matrix 𝛾5 is known as the chiral or helicity projection operator because it projects the
Dirac spinor into its left-handed and right-handed components. To show this, we introduce the
projectors 𝑃𝐿,𝑅 = 12 (𝟙 ∓ 𝛾5) . (3.10)

They satisfy 𝑃 2𝐿,𝑅 = 𝑃𝐿,𝑅 and 𝑃𝐿𝑃𝑅 = 0. When acting with these projectors on the Dirac
spinor 𝜓, we obtain its left-handed and right-handed components:𝜓𝐿 = 𝑃𝐿𝜓, 𝜓𝑅 = 𝑃𝑅𝜓, (3.11)

with 𝜓 = 𝜓𝐿 +𝜓𝑅. These left-handed and right-handed components are known as Weyl spinors,
often referred to as the chiral components. Using the chiral components, we can express the
Lagrangian the form:ℒ = 𝑖𝜓𝛾𝜇𝜕𝜇𝜓 − 𝜓𝑚𝜓 = 𝑖𝜓𝐿𝛾𝜇𝜕𝜇𝜓𝐿 + 𝜓𝑅𝛾𝜇𝜕𝜇𝜓𝑅 − 𝜓𝐿𝑚𝜓𝑅 − 𝜓𝑅𝑚𝜓𝐿. (3.12)

From the Lagrangian, we can derive the field equations for the chiral components:𝑖𝛾𝜇𝜕𝜓𝑅 = 𝑚𝜓𝐿,𝑖𝛾𝜇𝜕𝜓𝐿 = 𝑚𝜓𝑅. (3.13)

If we set 𝑚 = 0, the space-time evolutions of the Weyl spinors 𝜓𝑅 and 𝜓𝐿 decouple, yielding
the Weyl equations: 𝑖𝛾𝜇𝜕𝜓𝑅 = 0,𝑖𝛾𝜇𝜕𝜓𝐿 = 0. (3.14)

Since the field equations for 𝜓𝑅 and 𝜓𝐿 are now decoupled, it is possible that one of the two
chiral fields is sufÏcient to describe a massless fermion.
All known matter particles in the SM are known to be Dirac fermions, except for neutrinos,
which could be Majorana particles. To understand the difference between Dirac and Majorana
fermions, we need to introduce the charge conjugation operator, denoted by 𝐶, which satisfies
the relations[52]: 𝐶† = 𝐶𝑇 = 𝐶−1 = −𝐶, 𝐶𝛾𝜇𝐶 = −(𝛾𝜇)𝑇. (3.15)
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The charge-conjugated field 𝜓𝑐 is defined as 𝜓𝑐 = 𝐶𝜓†. We note that the action of 𝐶 on a Weyl
fermion flips its chirality: (𝜓𝐿)𝑐 = (𝜓𝑐)𝑅. This means that the antiparticle of a left-handed
particle is right-handed and vice-versa.
We now define the Majorana spinor, which satisfies the Majorana condition:𝜓𝑐 ≡ 𝐶𝜓𝑇 = 𝜓. (3.16)

Due to the action of 𝐶 that inverts all charge-like quantum numbers, Majorana fermions must
carry zero charge. It can be shown that a Majorana fermion can be written as the sum of a Weyl
fermion and its complex conjugate. Consequently, the Majorana mass term takes the following
form: −𝜓𝐿𝑚𝜓𝑅 − 𝜓𝑅𝑚𝜓𝐿 = −𝜓𝐿𝑚𝜓𝑐𝐿 + h.c. (3.17)

Here, h.c. denotes the Hermitian conjugate. Furthermore, it is possible to rewrite the Dirac
mass terms in the following manner:Ψ𝑅𝑚Ψ𝐿 + Ψ𝐿𝑚Ψ𝑅 = 12 [(Ψ𝑐)𝑇𝐿 𝐶𝑚Ψ𝐿 + Ψ𝑇𝐿𝐶𝑚𝑇 (Ψ𝑐)𝐿] + h.c. (3.18)

This rewriting reveals that a Dirac fermion can be viewed as a combination of two Majorana
fermions with the same mass but opposite CP parity, a phenomenon known as maximal mix-
ing. However, introducing Majorana masses for neutrinos within the framework of the Standard
Model (SM) is not straightforward. An SU(2)𝐿 transformation of 𝜓𝐿 would not preserve the La-
grangian mass term. Accomplishing this requires the introduction of something akin to the Higgs
mechanism or an effective operator. Unfortunately, none of these options can be implemented
within the SM without violating gauge invariance, Lorentz invariance, or renormalizability. Con-
sequently, it is not possible to consistently introduce neutrino mass terms within the rules of the
SM.

3.1.2 Neutrino oscillations

While the Standard Model initially portrayed neutrinos as massless particles, the notion that
massive neutrinos could exhibit flavor-changing properties was postulated by Pontecorvo in
1957[53, 54]. At that time, only one type of neutrino was known, but the subsequent discovery
of a second type of neutrino[55] fueled the development of theories describing neutrino mixing
between different flavor eigenstates[56, 57].

The experimental landscape took a significant turn with the advent of neutrino oscillation
experiments, providing compelling evidence for non-zero neutrino masses. The first inkling of
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this came in 1968 with the detection of solar neutrinos[58]. The subsequent discovery of the tau
neutrino in 2000[59] and the pivotal data from Super-Kamiokande[5] and SNO[15] conclusively
established that neutrinos can change their flavor during propagation.

Neutrinos are primarily produced through charged-current weak interactions, yielding weak-
eigenstate neutrinos (𝜈𝑒, 𝜈𝜇, or 𝜈𝜏). However, the neutrino mass matrix is not generally diagonal
in this basis. Consequently, the mass eigenstate neutrinos (𝜈1, 𝜈2, and 𝜈3) may differ from the
flavor eigenstates, setting the stage for flavor oscillations over time. therefore, the probability of
finding a neutrino created in a certain flavour state to be in the same or other state will oscillate
with time.

We consider first the case of Dirac neutrino mass term. In this case, the part of the La-
grangian thar describes lepton masses and charged current interactions can be written as−ℒ𝑊+𝑚 = 𝑔√2𝑒𝐿𝛾𝜇𝜈𝐿𝑊 −𝜇 + 𝑚𝑙𝑒𝐿𝑒𝑅 + 𝑚𝐷𝜈𝐿𝜈𝑅 + h.c., (3.19)

where we have used the flavour eigenstate fields. We note that the individual lepton flavours are
not conserved when the Dirac neutrino mass term is present, but the total lepton number 𝐿 is.
In general, the mass matrices 𝑚𝑙 and 𝑚𝐷 are complex, anc can be diagonalized via bi-unitary
transformations. We write𝑒𝐿 = 𝑉𝑙𝑒′𝐿, 𝑒𝑅 = 𝑉𝑅𝑒′𝑅, 𝜈𝐿 = 𝑈𝐿𝜈′𝐿, 𝜈𝑅 = 𝑈𝑅𝜈𝑅, (3.20)

where the matrices 𝑉𝐿, 𝑉𝑅, 𝑈𝐿 and 𝑈𝑅 are chosen so that they diagonalize the mass matrices of
the charged leptons and neutrinos. To keep the notation simple, we will omit the primes when
changing to the Dirac mass eigenstates 𝑒𝑖 = 𝑒𝑖𝐿 + 𝑒𝑖𝑅 and 𝜈𝑖 = 𝜈𝑖𝐿 + 𝜈𝑖𝑅. The Lagrangian then
takes the form −ℒ𝑊+𝑚 = 𝑔√2𝑒𝛾𝜇𝑉 †𝐿𝑈𝐿𝜈𝐿𝑊 −𝜇 + 𝑚𝑙𝑒𝐿𝑒𝑅 + 𝑚𝐷𝜈𝐿𝜈𝑅 + h.c., (3.21)

where now 𝑚𝑙 and 𝑚𝐷 represent the charged lepton masses and neutrino masses, respectively.
The matrix that relates neutrino flavour states and mass states is called Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) matrix: 𝑈 = 𝑉 †𝐿𝑈𝐿. The relationship between neutrino flavour
eigenstates |𝜈𝑖⟩ produced or absorbed alongside with the corresponding charged lepton, to the
mass eigenstates 𝜈𝑘 has the form: |𝜈𝑖⟩ = ∑𝑘 𝑈 ∗𝑖𝑘|𝜈𝑘⟩, (3.22)

where 𝑖 ∈ 𝑒, 𝜇, 𝜏 denotes the neutrino flavour, 𝜈𝑘 are the neutrino mass eigenstates, and the 𝑈𝑖𝑘
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is is an element of the unitary PMNS matrix. The matrix 𝑈 satisfies the unitary conditions:(𝑈𝑈†)𝛼𝛽 = ∑𝑖 𝑈𝛼𝑖𝑈 ∗𝛽𝑖 = 𝛿𝛼𝛽, (𝑈†𝑈)𝑖𝑗 = ∑𝛼 𝑈 ∗𝛼𝑖𝑈𝛼𝑗 = 𝛿𝑖𝑗. (3.23)

The PMNS matrix, in the Particle Data Group (PDG) convention, is given by:⎛⎜⎝ 𝑐12𝑐13 𝑠12𝑐13 𝑠13𝑒−𝑖𝛿−𝑠12𝑐23 − 𝑐12𝑠23𝑠13𝑒𝑖𝛿 𝑐12𝑐23 − 𝑠12𝑠23𝑠13𝑒𝑖𝛿 𝑠23𝑐13𝑠12𝑠23 − 𝑐12𝑐23𝑠13𝑒𝑖𝛿 −𝑐12𝑠23 − 𝑠12𝑐23𝑠13𝑒𝑖𝛿 𝑐23𝑐13 ⎞⎟⎠ × diag (1, 𝑒𝑖 𝛼212 , 𝑒𝑖 𝛼312 ) , (3.24)

where 𝑐𝑖𝑗 and 𝑠𝑖𝑗 are the cosine and sine of the mixing angle between the 𝑖-th flavour eigenstate
and 𝑗-th mass eigenstates, respectively. The symbol 𝛿 represents the Dirac CP-violating phase,
and 𝛼21 and 𝛼31 are the Majorana CP-violating phases. Let us consider an initial state produced
at 𝑡 = 0 by some charged current (CC) process involving a neutrino with flavor state 𝛼. The
evolution operator describes the state at a time 𝑡 as follows:|𝜈𝛼(𝑡)⟩ = ∑𝑘 𝑈 ∗𝛼𝑘𝑒−𝑖𝐸𝑘𝑡|𝜈𝑘⟩ = ∑𝑘 𝑈∗𝛼𝑘𝑒−𝑖𝐸𝑘𝑡 ∑𝛼 𝑈𝛽𝑘|𝜈𝛽⟩. (3.25)

The probability of the neutrino flavor transition 𝜈𝛼 → 𝜈𝛽 is given by:

𝑃 (𝜈𝛼 → 𝜈𝛽, 𝑡) = ∣⟨𝜈𝛽 ∣ 𝜈𝛼(𝑡)⟩∣2 = ∣∑𝑘 𝑈 ∗𝛼𝑘𝑈𝛽𝑘𝑒−𝑖𝐸𝑘𝑡∣2 = ∑𝑘𝑗 (𝐽𝛼𝛽)𝑘𝑗 𝑒−𝑖(𝐸𝑘−𝐸𝑗)𝑡, (3.26)

where we have defined the self-adjoint matrix (𝐽𝛼𝛽)𝑘𝑗 = 𝑈𝛼𝑘𝑈∗𝛽𝑘𝑈∗𝛼𝑗𝑈𝛽𝑗. The factor 𝑈 ∗𝛼𝑘 is
interpreted as the amplitude of transformation of the initial flavour eigenstate neutrino 𝜈𝛼 into
a mass eigenstate one 𝜈𝑘. The factor 𝑈𝛽𝑘 converts the time-evolved mass eigenstate 𝜈𝑘 into the
flavour eigenstate 𝜈𝛽. In the ultra-relativistic limit, we can approximate the energy eigenvalues𝐸𝑘 as 𝐸𝑘 ≈ 𝐸 + 𝑚2𝑘2𝐸 . (3.27)

Inserting this approximation into equation (3.26) yields:

𝑃 (𝜈𝛼 → 𝜈𝛽, 𝑡) = ∑𝑘𝑗 (𝐽𝛼𝛽)𝑘𝑗 exp(𝑖Δ𝑚2𝑗𝑘𝐿2𝐸 ) , (3.28)

where 𝐿 = 𝑐𝑡 is the distance between the neutrino source and the detector, and Δ𝑚2𝑗𝑘 = 𝑚2𝑗 −𝑚2𝑘
is the squared mass difference between the neutrino mass eigenstates.

The case for Majorana neutrinos is analogous, the difference is that the term 𝑚𝐷𝜈𝐿𝜈𝑅 +h.c.
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needs to be replaced by 𝑚𝑀𝜈𝑐𝐿𝜈𝑅 + h.c. But in this case, not only the individual lepton flavour
is broken, but also the total lepton number. The structure of the charged current interactions
turns out to be the same as in the case of Dirac neutrinos. Therefore, the oscillation probabilities
in the case of the Majorana mass term are the same as in the case of the Dirac mass term. This
means that we cannot distinguish between Dirac and Majorana neutrinos by observing neutrino
oscillations. The situation changes when the neutrino mass term is of the Dirac+Majorana form.
In this case, again, total lepton number conservation is violated by the Majorana mass term.
Unlike the previous cases, we can have a new type of neutrino oscillation: oscillation between
sterile states 𝜈𝑎 → 𝜈𝑐𝑏 can also occur. In principle, this case can be distinguished from the pure
Dirac and Majorana cases in neutrino oscillations experiments[60].

In order to observe neutrino oscillations, it is necessary to have a non-degenerate mass spec-
trum, which implies Δ𝑚2𝑗𝑘 ≠ 0, and a non-trivial flavor mixing matrix, denoted by 𝑈 ≠ 𝟙.
Today there is a strong body of evidence of neutrino oscillations from a variety of experiments.
However, neutrino oscillation experiments are sensitive to the difference between squared neu-
trino masses only, and thus are insensitive to the absolute neutrino mass scale. Today, the
square mass difference Δ𝑚221 is known and is positive, yielding 𝑚2 > 𝑚1, but nothing has been
discovered yet about the sign of Δ𝑚232. This leads to two mass schemes, named the normal
ordering (NO): 𝑚1 < 𝑚2 < 𝑚3, and the inverted ordering (IO): 𝑚3 < 𝑚1 < 𝑚2.

The absolute neutrino mass scale can be probed by neutrinoless double-beta decay (0𝜈𝛽𝛽)[61]
laboratory experiments. 0𝜈𝛽𝛽 decay is a process where two neutrons beta-decay simultaneously
without emitting any neutrinos or antineutrinos. This process violates lepton number by two
units. Therefore, neutrinos must be Majorana in order to induce 0𝜈𝛽𝛽 decay[62]. If the neutrinos
are Dirac, then this process will be absent and the Majorana phases in the PMNS matrix
are non-physical and can be set to zero. In addition, observation of this process would also
provide invaluable information about the dominance of matter over antimatter in the Universe,
because two matter particles (electrons) are emitted in the decay without the balance of the
corresponding antiparticles[63].

We discuss briefly the consequences of 𝐶𝑃, 𝑇 and 𝐶𝑃 𝑇 symmetries for neutrino oscillations.
Note that charge conjugation operation 𝐶 is not well defined for neutrinos, as it would convert
a left handed neutrino into a non-existent left handed antineutrino. On the contrary, 𝐶𝑃 is well
defined: it converts a left handed neutrino 𝜈𝐿 into a right handed antineutrino. 𝐶𝑃 is essentially
particle-antiparticle conjugation. If 𝐶𝑃 is conserved, the probabilities of oscillations between
particles and their antiparticles coincide:𝑃 (𝜈𝛼 → 𝜈𝛽, 𝑡) = 𝑃 (𝜈𝛼 → 𝜈𝛽, 𝑡) . (3.29)
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The action of particle-antiparticle conjugation on the matrix 𝑈 amounts to 𝑈 → 𝑈 ∗, which
means that 𝐶𝑃 is only conserved in the leptonic sector if the matrix 𝑈 is real or can be made
real by a rephasing of the lepton fields. A unitary 𝑛 × 𝑛 matrix depends on 𝑛(𝑛 − 1)/2 angles
and 𝑛(𝑛 + 1)/2 phases. In the Dirac case, 2𝑛 − 1 phases can be removed by proper rephasing
of the left fields, which leaves (𝑛 − 1)(𝑛 − 2)/2 physical phases. Therefore, in the Dirac case,𝐶𝑃 non-conservation is only possible for 𝑛 ≥ generations. In the Majorana case, only 𝑛 phases
can be removed, leaving 𝑛(𝑛 − 1)/2 physical phases. The Majorana mass phases do not lead to
observable effects for neutrino oscillations[64].𝐶𝑃 𝑇 transformation can be considered as a combined action of 𝐶𝑃 and time reversal, which
interchanges the initial and final states. Under 𝐶𝑃 𝑇, the oscillation probability 𝑃 (𝜈𝛼 → 𝜈𝛽, 𝑡)
goes into 𝑃 (𝜈𝛽 → 𝜈𝛼, 𝑡). But under 𝐶𝑃 𝑇, 𝑈 → 𝑈 ∗ and 𝑡 → −𝑡, which transforms the oscillation
amplitude into its complex conjugate. Thus, oscillation probabilities under 𝐶𝑃 𝑇 are invariant
with respect to 𝐶𝑃 𝑇: 𝑃 (𝜈𝛼 → 𝜈𝛽, 𝑡) = 𝑃 (𝜈𝛽 → 𝜈𝛼, 𝑡) . (3.30)

From 𝐶𝑃 𝑇 invariance, it follows that 𝐶𝑃 conservation is equivalent to 𝑇 conservation. If 𝐶𝑃 is
not conserved, oscillation probabilities are different for neutrinos from those for antineutrinos.
This is possible if the matrix 𝑈 is complex, i.e. it has unremovable phases. For three generations
there is only one such phase 𝛿, so there should be only one 𝐶𝑃-odd oscillation asymmetry.
Denoting the 𝐶𝑃-odd asymmetry asΔ𝑃𝛼𝛽 ≡ 𝑃 (𝜈𝛼 → 𝜈𝛽, 𝑡) − 𝑃 (𝜈𝛼 → 𝜈𝛽, 𝑡) . (3.31)

From 𝐶𝑃 𝑇 invariance we obtain Δ𝑃𝛼𝛽 = −Δ𝑃𝛽𝛼. Using eq. 3.24, we can writeΔ𝑃𝑒𝜇 = Δ𝑃𝜇𝜏 = Δ𝑃𝜏𝑒 =4𝑠12𝑐12𝑠13𝑐213𝑠23𝑐23 sin 𝛿× [sin(Δ𝑚2122𝐸 𝑡) + sin(Δ𝑚2232𝐸 𝑡) + sin(Δ𝑚2312𝐸 𝑡)] . (3.32)

This expression vanishes for 𝛿 = 0. It also vanishes if any of the mixing angles 𝜃12, 𝜃13 or 𝜃23
is 0∘ or 90∘. Since the mass squared differences satisfy Δ𝑚212 + Δ𝑚223 + Δ𝑚231 = 0, the 𝐶𝑃-odd
asymmetry vanishes if even one of Δ𝑚2𝑖𝑗 is zero. The experimental observation of 𝐶𝑃 violation
in neutrino oscillations is a very difÏcult task. The 𝐶𝑃-odd probability asymmetry is suppressed
if any one of the three lepton mixing angles is small, which is the case for 𝜃13. Current neutrino
parameters do not exclude the possibility of observation of 𝐶𝑃 violation effects in future neutrino
experiments.
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3.1.3 Neutrinos masses in the Standard Model

Remembering the development of chapter 2, in the SM all quarks and charged fermions get their
masses through the Yukawa couplings with the Higgs field:ℒYuk = −�̄�𝐿𝐻𝑦𝑒𝑒𝑅 − �̄�𝐿𝐻𝑦𝑑𝑑𝑅 − �̄�𝐿�̃�𝑦𝑢𝑢𝑅 + h.c. (3.33)

After electroweak symmetry breaking, the Higgs acquires a vev ⟨𝐻⟩ = 𝑣/√2, and the Yukawa
terms yield the mass matrices𝑀𝑒 = 𝑦𝑒 𝑣√2, 𝑀𝑑 = 𝑦𝑑 𝑣√2, 𝑀𝑢 = 𝑦𝑢 𝑣√2. (3.34)

In general, different types of mass terms can be built for fermions. Considering a set of fermions𝜓𝑖, with 𝑖 ∈ {1, 2, … , 𝑛}, we can write the mass terms with a 𝑛 × 𝑛 matrix. Fermions have a
Dirac mass term: ℒ𝐷 = − ∑𝑖,𝑗 𝜓𝑖𝑅𝑀𝐷𝑖𝑗 𝜓𝑗𝐿 + h.c., (3.35)

where we have both left and right components of fermions. Right-handed neutrinos can be
added to the SM particle content, producing the gauge-invariant, renormalizable Yukawa term𝑦𝜈𝐿�̃�𝜈𝑅 +h.c., but to accommodate the 𝑂(0.1) eV neutrino mass scale, the yukawa coupling 𝑦𝜈
would be of the order of 10−13. Therefore, with this model, one needs a set of tiny dimensionless
parameters, which are six or seven orders of magnitude smaller than the next smallest Yukawa
coupling constant.

The Majorana mass term can be built using the charge conjugated field, in which case the
Majorana mass term has the formℒ𝑀 = −12 ∑𝑖,𝑗 𝜓𝑖𝐿𝑀𝑀𝑖𝑗 𝜓𝑗,𝑐𝐿 + h.c., (3.36)

where we note that the mass term can be built for right handed neutrinos in an analogous way.
Both Majorana and Dirac mass terms can coexist in the Lagrangian.

Neutrinos are massless in the context of the SM. Therefore, we cannot have Dirac masses
since there are no right-handed neutrinos 𝜈𝑅 in the Standard Model. The reason why neutrinos
cannot have Majorana masses in the SM is more subtle. The Majorana mass term for neutrinos
should be of the form 𝜈𝐿𝜈𝑐𝐿. 𝜈𝐿 has weak isospin projection 𝐼3 = 1/2, and the Majorana mass
term has 𝐼3 = 1, meaning that it is a component of the isotriplet operator 𝐿𝑇𝐿𝐶𝑖𝜏2𝜏𝜏𝜏𝐿𝐿 ∼ (3, −2).
To introduce the Majorana mass in a gauge invariant way to preserve the renormalizability of
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the standard model, we would need an isotriplet Higgs field Δ ∼ (3, 2). If one introduces
the previous field in the Lagrangian, its electrically neutral component would develop a VEV,
causing that a Majorana neutrino mass is generated. However, such field does not exist in the
standard model. It is possible to build a composite triplet Higgs operator out of two Higgs
doublets, which is the matter of the following section.

3.1.4 Dimension-5 Weinberg operator

Following the discussion of the preceding section, we identify that the operator 𝐻𝑇𝑖𝜏2𝜏𝜏𝜏𝐻 pos-
sesses the correct quantum numbers required for constructing the triplet Higgs operator. The
term (𝐿𝑇𝐿𝐶𝑖𝜏2𝜏𝜏𝜏𝐿𝐿)(𝐻𝑇𝑖𝜏2𝜏𝜏𝜏𝐻) has dimension 5, preventing its entry into the Lagrangian of a
renormalizable model at the fundamental level. However, it could be introduced as an effective
operator at a higher loop level.

In the context of treating the Standard Model as an effective field theory, one assumes the
adherence of the SM gauge symmetry 𝐺SM = SU(3)𝑐 × SU(2)𝐿 × U(1)𝑌, with the fields heavier
than the EWSB scale having neglected dynamics. Within this framework, certain heavy BSM
fields may mediate interactions absent in the SM alone, provided each interaction is Lorentz
invariant and upholds the gauge symmetry 𝐺SM. This consideration necessitates the inclusion
of higher-dimensional, non-renormalizable operators. One such term, introduced by Weinberg
in 1979, stands out as a unique dimension-five operator capable of generating Majorana neu-
trino masses[65]. This operator, known as the “dimension-5 Weinberg operator” is the lowest-
dimensional, non-renormalizable operator built from standard model fields that is invariant
under 𝐺SM. It can be succinctly represented as:𝒪𝑊 = 𝐶Λ𝐿𝑐𝐻𝐻𝐿, (3.37)

where Λ denotes an effective scale, 𝐶 represents a dimensionless coefÏcient, and 𝐿 and 𝐻 refer
to the lepton and Higgs isodoublets, respectively. In this representation, we have omitted the
contraction of Lorentz indices as well as SU(2) indices.

Within the SM, both lepton and baryon numbers are conserved at the perturbative level,
owing to the accidental symmetries inherent in the Lagrangian. These symmetries emerge as
direct consequences of the particle content, gauge invariance, renormalizability, and Lorentz
invariance of the model. The Weinberg operator, being a dimension-5 operator, introduces a
violation of lepton number conservation. This violation is considered effective and is expected to
be suppressed by the scale Λ at which lepton number symmetry breaks down. Such a description
provides an effective theory that encompasses various underlying models. Following spontaneous
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symmetry breaking, when the Higgs field acquires a non-zero vacuum expectation value ⟨𝐻⟩ =𝑣/√2, neutrinos gain Majorana masses, expressed as:𝑚 = 𝐶Λ𝑣2. (3.38)

In the scenario where the scale of new physics, Λ, is large, the neutrino mass naturally becomes
small, leading to the seesaw mechanism. Given that terms in the Lagrangian with a dimension
larger than five are non-renormalizable, the Weinberg operator is considered effective at energies
beyond the scale of Λ.

The Weinberg operator can be generalized to the set𝒪′…′𝑊 ∼ 𝐿𝐿𝐻𝐻(𝐻†𝐻)𝑛, (3.39)

where the number of primes equals 𝑛. In this case, one obtains a more powerful suppression𝑚 ∼ 𝑣𝜖2𝑛+1 (3.40)

as 𝑛 increases. If one wants to derive, from an underlying renormalizable or UV complete theory,
one of the Weinberg-type operators as the leading contributions to neutrino mass, the operator
needs to be “opened up”. Depending on which operator dominates and how it is opened up, one
determines the type of theory is obtained. Some possible choices are[66]:

1. Open up 𝒪𝑊 at tree-level using only exotic massive fermions and scalars as the new physics.

2. Open up 𝒪𝑊 at 𝑗-loop level using heavy exotics only.

3. Open up𝒪𝑊 at 𝑗-loop level using both light SM particles and heavy exotics.

4. Open up 𝒪′…′𝑊 at tree-level using heavy exotics only.

5. Open up 𝒪′…′𝑊 at 𝑗-loop level using heavy exotics only.

6. Open up 𝒪′…′𝑊 at 𝑗-loop level using both light SM particles and heavy exotics.

The first option gives rise to the three distinct types of seesaw mechanisms. These mechanisms
are explored further in the following section. The other scenarios lead to different kinds of
radiative models. We will study one of such models known as the scotogenic in a subsequent
section
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3.1.5 The seesaw mechanisms

All Majorana neutrino mass models ultimately reduce to the Weinberg operator or equivalent
formulations. There are only three established mechanisms for generating this operator at the
tree level, and they collectively fall under the widely recognized category of seesaw mechanisms.
The seesaw mechanisms operate on the principle of inducing the operator 𝒪𝑊 by exchanging
heavy particles. To implement the seesaw mechanism, we extend the Standard Model by intro-
ducing the right-handed neutrino 𝜈𝑅, which is a singlet with respect to all SM gauge groups.
Being electroweak singlets, right-handed neutrinos can possess Majorana mass terms that are in-
variant under SU(2)𝐿 ×U(1)𝑌. Additionally, they do not contribute to the electroweak anomaly,
and their number is not constrained by the requirement of anomaly cancellation. The quantity
of right-handed neutrinos is not bound to coincide with the number of generations in the SM.
However, there are astrophysical and cosmological constraints on their number, which depend
on their masses and mixing parameters[67, 68].

Majorana mass terms for 𝜈𝑅 are allowed without any restrictions. However, for the left-
handed neutrinos, Majorana mass terms will remain forbidden since they violate gauge invari-
ance. For simplicity, we consider only one neutrino generation. The corresponding Lagrangian
has the form[69]: ℒD+M = −12𝑚𝐿𝜈𝐿𝜈𝑐𝐿 − 12𝑚𝑅𝜈𝑐𝑅𝜈𝑅 − 𝑚𝐷𝜈𝐿𝜈𝑅 + h.c., (3.41)

where, 𝑚𝐿, 𝑚𝐷, and 𝑚𝑅 are real parameters. In this case, we can group the Dirac and Majorana
mass terms in a mass matrix, giving the Lagrangian the following form:ℒD+M = −12𝑛𝐿𝑀𝐷+𝑀(𝑛𝐿)𝑐 + h.c., (3.42)

where 𝑀D+M = ( 𝑚𝐿 𝑚𝐷𝑚𝐷 𝑚𝑅 ) , 𝑛𝐿 = ( 𝜈𝐿(𝜈𝑅)𝑐 ) . (3.43)

The mass matrix 𝑀D+M indicates that there exists a mixing, but this matrix can be diagonal-
ized, leading to separate mass eigenstates that do not mix. We diagonalize the matrix with a
transformation 𝑈𝑇𝑀D+M𝑈 = 𝑚𝑑, where 𝑈 is an orthogonal matrix, from which we obtain the
mixing angle, given by:

tan 2𝜃 = 2𝑚𝐷𝑚𝑅 − 𝑚𝐿 . (3.44)

The masses of the physical fields are therefore the eigenvalues of 𝑀D+M. These eigenvalues are
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given by: 𝑚1,2 = 12 (𝑚𝐿 + 𝑚𝑅) ∓ 12√4𝑚2𝐷 + (𝑚𝑅 − 𝑚𝐿)2. (3.45)

Considering the mixing, the seesaw mechanism can be introduced in the SM to explain the
neutrino mass generation. In the SM, there is no left-handed Majorana mass term, since a
left-handed Majorana term would violate gauge charges, so we can assume 𝑚𝐿 = 0 to respect
unbroken symmetries. The right-handed neutrinos are gauge singlets, and we can introduce their
Majorana mass term without further problems. The Dirac component comes from a standard
Yukawa interaction. Lepton number is violated at a scale much larger than the electroweak
scale, which implies 𝑚𝑅 ≫ 𝑚𝐷, which is the main assumption in the seesaw mechanism. Under
these assumptions, the eigenvalues take the form:𝑚1 ≃ −𝑚2𝐷𝑚𝑅 , 𝑚2 ≃ 𝑚𝑅. (3.46)

The relation between the physical and the original states is given by𝜈𝐿 = 𝑖𝜈1𝐿 + 𝑚𝐷𝑚𝑅 𝜈2𝐿,(𝜈𝑅)𝑐 = −𝑖𝑚𝐷𝑚𝑅 𝜈1𝐿 + 𝜈2𝐿. (3.47)

In this simplified case, we note that active neutrinos acquire naturally small masses suppressed
by 𝑚𝑅, which could be arbitrarily large.

We now consider the general case of 𝑛 generations. Now, the Dirac and Majorana seesaw
matrix has the form: 𝑀 = ( 0 𝑚𝐷𝑚𝑇𝐷 𝑀𝑅 ) , 𝑛𝐿 = ( 𝑣𝐿(𝑣𝑅)𝑐 ) . (3.48)

This matrix can be diagonalized with a 2𝑛 × 2𝑛 unitary matrix 𝑉 such that 𝑉 𝑇𝑀𝑉 = 𝑚. The
matrix 𝑉 can be of the form:𝑉 = ( 1 𝜌−𝜌† 1 ) , 𝑉 †𝑉 = 1 + 𝒪 (𝜌2) , (3.49)

where its elements are 𝑛 × 𝑛 matrices, and 𝜌 is treated as a perturbation. For simplicity, we
can neglect possible 𝐶𝑃 violation in the leptonic sector, and consider 𝑚𝐷 and 𝑀𝑅 to be real
matrices. The matrix 𝜌 can also be taken as real. Considering the previous assumptions, upon
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block-diagonalization of the matrix 𝑀, the matrix 𝑚 takes the form:𝑚 ≃ ( −𝑚𝐷𝑀−1𝑅 𝑚𝑇𝐷 00 𝑀𝑅 ) . (3.50)

As a result, we observe that the left-handed Majorana matrix is given by:𝑚𝐿 = −𝑚𝐷𝑀−1𝑅 𝑚𝑇𝐷. (3.51)

The diagonalization of the effective mass matrix 𝑚𝐿 yields 𝑛 light Majorana neutrinos, com-
posed primarily by the active neutrinos 𝜈𝐿, with a very small contribution of the sterile neutrinos𝜈𝑅. On the other hand, diagonalization of 𝑀𝑅 produces 𝑛 heavy Majorana neutrinos which are
mainly composed of 𝜈𝑅. This tells us that the heavier 𝜈𝑅 is, the lighter 𝜈𝐿 will be. The masses
of active neutrinos are of the order of 𝑚2𝐷/𝑀𝑅. The case we just considered is known as Type-I
seesaw mechanism[70]. This mechanism is illustrated in Fig. 3.1a. Interestingly, considering the
largest Dirac mass eigenvalue of the order of the electroweak scale, around 200 GeV, and the
right handed scale as 𝑀𝑅 ∼ 1015 GeV, one obtains the mass of the heaviest light neutrino 𝑚𝜈 to
be around (10−2 −10−1) eV, which is of the same order of magnitude for the neutrino oscillation
solution of the atmospheric neutrino anomaly[71].

The Type III seesaw mechanism[72] is analogous to the Type I seesaw, but it involves the
introduction of an SU(2) triplet fermion Σ with hypercharge zero, instead of the right-handed
neutrino 𝜈𝑅. The diagram corresponding to the Type III seesaw is shown in Fig. 3.1c. In this
scenario, the electrically neutral component of Σ can be regarded as the right-handed neutrino.
It can possess a Majorana mass, and when combined with the left-handed neutrino, it allows for
a Dirac mass term.

On the other hand, the Type II seesaw mechanism[73, 74] involves the inclusion of a scalar
SU(2) triplet (Δ) with hypercharge 1 to the Standard Model. In this case, there is no additional
fermion introduced for the neutrino to mix with, leading to the absence of a Dirac mass term.
This model is the unique theory obtained from Yukawa coupling the fermion bilinear 𝐿𝐿 to Δ
which in turn couples to 𝐻†𝐻†, a cubic interaction term in the scalar potential. In this case,
the The seesaw effect is obtained upon requiring a positive quadratic term for the triplet in
the scalar potential, that on its own would cause the triplet’s VEV to vanish, but which in
combination with the cubic term induces a small VEV. Its corresponding diagram is shown in
Fig. 3.1b.
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𝜈𝐿 𝜈𝑅 𝜈𝑅 𝜈𝐿

⟨𝐻⟩ ⟨𝐻⟩
(a) Seesaw Type-I

⟨𝐻⟩ ⟨𝐻⟩
Δ𝜈𝐿 𝜈𝐿

(b) Seesaw Type-II

𝜈𝐿 Σ Σ 𝜈𝐿

⟨𝐻⟩ ⟨𝐻⟩
(c) Seesaw Type-III

Figure 3.1: Seesaw mechanisms diagrams.

The three seesaw mechanisms discussed represent the simplest realizations of neutrino Ma-
jorana masses with an extension of the SM that involves the addition of a single BSM field. In
the tree level seesaws, the neutrino mass scale is roughly given by 𝜇𝜈 = ⟨𝐻⟩/Λ, with ⟨𝐻⟩ the
VEV of the Higgs.

3.2 The scotogenic model

As discussed earlier in this chapter, the minimal introduction of sterile neutrinos into the SM
would necessitate extremely small Yukawa couplings. While this scenario is theoretically pos-
sible, it has proven unsatisfactory to many researchers. The observed tiny neutrino masses
strongly suggest an alternative mechanism for neutrino mass generation that can rationally ac-
count for their small values. This has led to the development of numerous models explaining
Majorana masses, with fewer addressing Dirac masses. In this section, we delve into the sco-
togenic model, a foundational framework that has inspired many models explaining both tiny
Majorana and Dirac neutrino masses.

The scotogenic model, initially proposed by Ernest Ma in 2006[21], offers an intriguing
framework where particles responsible for generating neutrino masses also serve as potential dark
matter candidates. This model employs a one-loop mechanism for neutrino mass generation,
utilizing interactions between the dark sector and neutrinos to induce small neutrino masses.
Constituting a minimal extension of the Standard Model, the scotogenic model introduces three
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neutral fermions 𝑁1,2,3 and a single SU(2) doublet 𝜂 = (𝜂+, 𝜂0)𝑇. Both 𝑁𝑖 and 𝜂 are odd
under an additional 𝑍2 symmetry. The inclusion of this symmetry ensures that the 𝜂 doublet
cannot acquire a nonzero VEV, making it a suitable candidate for dark matter. Simultaneously,
it prevents the existence of tree-level neutrino masses, preserving the viability of neutrinos as
massless particles at the tree level. However, a loop-level Majorana mass for neutrinos can still
arise within the scotogenic model due to the interactions of the dark sector with neutrinos.

The additional terms in the Lagrangian responsible for neutrino mass in the scotogenic model
are given by: ℒ𝑌 = −ℎ𝑖𝑗𝐿𝑖𝐿𝜂𝑁𝑗 − 12𝑀𝑖𝑗𝑁𝑖𝑁𝑐𝑗 + h.c., (3.52)ℒ𝑉 = 𝜆3 (𝐻†𝐻) (𝜂†𝜂) + 𝜆4 (𝐻†𝜂) (𝜂†𝐻) + 12𝜆5 [(𝐻†𝜂)2 + (𝜂†𝐻)2] , (3.53)

where all 𝜆𝑖 can be chosen to be real without any loss of generality. After 𝜙0 acquires a nonzero
VEV (𝑣) and using 𝜂0 = 𝜂𝑅 + 𝑖𝜂𝐼, the 𝜆5 term can be expressed as:12𝛾5𝑣2 (𝜂2𝑅 − 𝜂2𝐼 ) . (3.54)

This particular term induces a mass splitting between the real (𝜂𝑅) and imaginary (𝜂𝐼) compo-
nents of the dark scalar doublet, leading to distinct masses for these two states. The diagram
of the radiative generation of neutrino mass, is shown in Fig. 3.2⟨ℎ0⟩ ⟨ℎ0⟩

𝜈𝑖 𝑁𝑘 𝑁𝑘 𝜈𝑗
𝜂0 𝜂0

Figure 3.2: One-loop generation of neutrino mass.

The scotogenic mass term for the previous diagram is given by the integral of the form[75]:

𝐼𝑖𝑗 = ∑𝑘 ℎ𝑖𝑘ℎ𝑗𝑘2 ∫ 𝑑4𝑘(2𝜋)4 𝑖 (�̸� + 𝑚𝑁𝑘) [ 1(𝑘2 − 𝑚2𝑁𝑘) (𝑘2 − 𝑚2𝑅) − 1(𝑘2 − 𝑚2𝑁𝑘) (𝑘2 − 𝑚2𝐼)]= ∑𝑘 ℎ𝑖𝑘ℎ𝑗𝑘2 ∫ 𝑑4𝑘(2𝜋)4 𝑖 (�̸� + 𝑚𝑁𝑘) [ 𝑚2𝑅 − 𝑚2𝐼(𝑘2 − 𝑚2𝑁𝑘) (𝑘2 − 𝑚2𝑅) (𝑘2 − 𝑚2𝐼)] .
(3.55)

To evaluate this integral, we utilize a generalization of Feynman’s formula for 𝑛 propagators[76]
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(labeled 𝐴𝑛), each repeated 𝑚𝑖 times in the denominator:1𝐴𝑚11 𝐴𝑚22 … 𝐴𝑚𝑛𝑛 = ∫10 𝑑𝑥1 … 𝑑𝑥𝑛𝛿 (∑ 𝑥𝑖 − 1) Π𝑥𝑚𝑖−1𝑖(∑ 𝑥𝑖𝐴𝑖)∑ 𝑚𝑖 Γ (∑ 𝑚𝑖)Γ(𝑚1) … Γ (𝑚𝑛) . (3.56)

Using this formula, the integral can be expressed as follows:𝐼𝑖𝑗 = ∑𝑘 𝑖ℎ𝑖𝑘ℎ𝑗𝑘 (𝑚2𝑅 − 𝑚2𝐼)2 ∫ 𝑑4𝑘(2𝜋)4 (�̸� + 𝑚𝑁𝑘) ×⎡⎢⎣∫ 𝑑𝑥𝑑𝑦𝑑𝑧 𝛿 (𝑥 + 𝑦 + 𝑧 − 1) Γ(3)[𝑥 (𝑘2 − 𝑚2𝑁𝑘) + 𝑦 (𝑘2 − 𝑚2𝑅) + 𝑧 (𝑘2 − 𝑚2𝐼)]3 ⎤⎥⎦= ∑𝑘 𝑖ℎ𝑖𝑘ℎ𝑗𝑘 (𝑚2𝑅 − 𝑚2𝐼)2 ∫ 𝑑4𝑘(2𝜋)4 (�̸� + 𝑚𝑁𝑘) ×∫10 𝑑𝑥 ∫1−𝑥0 𝑑𝑦 Γ(3)[𝑥((𝑘2 − 𝑚2𝑁𝑘)) + 𝑦 (𝑘2 − 𝑚2𝑅) + (1 − 𝑥 − 𝑦) (𝑘2 − 𝑚2𝐼)]3
(3.57)

Next, we rewrite the denominator as Δ = 𝑥(𝑚2𝑁𝑘 − 𝑚2𝐼) + 𝑦(𝑚2𝑅 − 𝑚2𝐼) + 𝑚2𝐼 , resulting in the
expression: 𝐼𝑖𝑗 = ∑𝑘 𝑖ℎ𝑖𝑘ℎ𝑗𝑘 (𝑚2𝑅 − 𝑚2𝐼) ∫10 𝑑𝑥 ∫1−𝑥0 𝑑𝑦 ∫ 𝑑4𝑘(2𝜋)4 �̸� + 𝑚𝑁𝑘(𝑘2 − Δ)3 (3.58)

As a next step, the integral over �̸� is shown to vanish due to symmetry. By using a Wick rotation
(𝑘0 = 𝑖𝑙0 so that 𝑘2 → −𝑙2) the integral over 𝑘 can be performed in a four-dimensional spherical
space, leading to:𝐼𝑖𝑗 = ∑𝑘 ℎ𝑖𝑘ℎ𝑗𝑘𝑚𝑁𝑘 (𝑚2𝑅 − 𝑚2𝐼)(2𝜋)4 ∫10 𝑑𝑥 ∫1−𝑥0 𝑑𝑦 ∫ 𝑙3𝑑𝑙𝑑ΩΔ3 (1 + 𝑙2Δ)3= ∑𝑘 ℎ𝑖𝑘ℎ𝑗𝑘𝑚𝑁𝑘 (𝑚2𝑅 − 𝑚2𝐼)(2𝜋)4 ∫10 𝑑𝑥 ∫1−𝑥0 𝑑𝑦 ∫ 2𝜋2𝑙3𝑑𝑙Δ3 (1 + 𝑙2Δ)3= ∑𝑘 ℎ𝑖𝑘ℎ𝑗𝑘𝑚𝑁𝑘 (𝑚2𝑅 − 𝑚2𝐼)32𝜋2 ∫10 𝑑𝑥 ∫1−𝑥0 𝑑𝑦 1𝑥 (𝑚2𝑁𝑘 − 𝑚2𝐼) + 𝑦 (𝑚2𝑅 − 𝑚2𝐼) + 𝑚2𝐼= ∑𝑘 ℎ𝑖𝑘ℎ𝑗𝑘𝑚𝑁𝑘32𝜋2 ∫10 𝑑𝑥 log(𝑥 (𝑚2𝑁𝑘 − 𝑚2𝑅) + 𝑚2𝑅𝑥 (𝑚2𝑁𝑘 − 𝑚2𝐼) + 𝑚2𝐼 )= ∑𝑘 ℎ𝑖𝑘ℎ𝑗𝑘𝑚𝑁𝑘32𝜋2 (𝑚2𝑁𝑘 log𝑚2𝑁𝑘 − 𝑚2𝑅 log𝑚2𝑅𝑚2𝑁𝑘 − 𝑚2𝑅 − 𝑚2𝑁𝑘 log𝑚2𝑁𝑘 − 𝑚2𝐼 log𝑚2𝐼𝑚2𝑁𝑘 − 𝑚2𝐼 )= ∑𝑘 ℎ𝑖𝑘ℎ𝑗𝑘𝑚𝑁𝑘32𝜋2 ( 𝑚2𝑅𝑚2𝑅 − 𝑚2𝑁𝑘 log( 𝑚2𝑅𝑚2𝑁𝑘 ) − 𝑚2𝐼𝑚2𝐼 − 𝑚2𝑁𝑘 log( 𝑚2𝐼𝑚2𝑁𝑘 ))

(3.59)
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Taking different mass limits for 𝑚𝑅, 𝑚𝐼, and 𝑀𝑁𝑘 , this formula can produce both a seesaw and
an inverse seesaw-like relation between the mass of 𝑀𝑁𝑘 and that of the neutrino masses. In
the following chapter, we will further develop an extension to the scotogenic model.

3.2.1 Additional radiative schemes for neutrino masses

As was mentioned in sec. 3.1.4, there are possible radiative neutrino mass models which derive
from the Weinberg operator and adopt the number of loops as the primary consideration. At𝑗-loop order, neutrino masses are typically given by𝑚𝜈 ∼ 𝐶 ( 116𝜋2 )𝑗 𝑣2Λ (3.60)

for the 𝒪𝑊 associated options 2 and 3 previously introduced. For the 𝒪′𝑊 cases of options 5 and
6, are typically given by 𝑚𝜈 ∼ 𝐶 ( 116𝜋2 )𝑗 𝑣4Λ3 , (3.61)

where 𝑣 = √2⟨𝐻⟩ ≃ 100 GeV. All coupling constants, and for some models also certain mass-
scale ratios, are absorbed in the dimensionless coefÏcient 𝐶.

Most of the radiative neutrino mass models generate neutrino mass at 1, 2 and 3-loop level.
In [77] 12 topologies were identified which contribute to neutrino mass. Some of the topologies
cannot be realized in a renormalizable theory or require counter-terms to absorb divergences.
There are six topologies which generate neutrino mass via a 1-loop diagram, which we label as
T1-i, T1-ii, T1-iii, T3, T4-2-i and T4-3-i, depicted in Fig. 3.3:
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⟨𝐻⟩ ⟨𝐻⟩
𝐿 𝐿

(a) T1-i

⟨𝐻⟩

⟨𝐻⟩𝐿 𝐿
(b) T1-ii

⟨𝐻⟩ ⟨𝐻⟩
𝐿 𝐿

(c) T1-iii⟨𝐻⟩ ⟨𝐻⟩
𝐿 𝐿

(d) T3

⟨𝐻⟩ ⟨𝐻⟩
𝐿 𝐿

(e) T4-2-i

⟨𝐻⟩ ⟨𝐻⟩
𝐿 𝐿

(f) T4-3-i

Figure 3.3: Feynman diagram topologies for 1-loop radiative neutrino mass generation with the Wein-
berg operator.

These are also called the UV completions of the Weinberg operator at 1-loop. Depending on
the particle content, the topologies do not rely on any additional symmetry. The topology T3
is the only one with a quartic scalar interaction. The scotogenic model was its first realization.
Several variants of the scotogenic model have been proposed in the literature, which include the
addition of new fermions, additional scalars, higher SU(2) representations, extended discrete
symmetries, etc[78–83]. Many other models have been built using other topologies to generate
neutrino masses. For example, in the reference [84] a topology 𝑇 1 − 𝑖 was used. Among the
models based on the topology T1-ii, there are four possible operators which models are based
on. The topology T1-iii appears in the sypersymmetrized version of the scotogenic model[85].

Models with additional scalar fields contribute to neutrino mass via their vacuum expectation
value in contrast to being a propagating degree of freedom in the loop. In the following chapter
we introduce a variant of the scotogenic model with additional VEV insertions. Our model
extends the symmetry sector with a gauged U(1)𝐿 symmetry.
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In the preceding chapter, we delved into the Scotogenic model, an elegant framework rep-
resenting the simplest model of radiative neutrino masses. This model not only unifies the
generation of SM neutrino masses with dark matter but also introduces intriguing features. In
this chapter, we extend the Scotogenic model by elevating lepton number conservation to the
status of an U(1)𝐿 gauge symmetry spontaneously broken by three units.

The Scotogenic model incorporates a second SU(2) scalar doublet 𝜂 and at least two right-
handed neutrinos 𝑁𝑖, all transforming with odd parity under an exact ℤ2 symmetry. This
symmetry serves a dual purpose: ensuring the stability of the lightest ℤ2-odd state, a potential
dark matter candidate if electrically neutral, and preventing the 𝜂 doublet from acquiring a non-
zero VEV, thereby avoiding tree-level neutrino masses. However, justifying the theoretical basis
for this ℤ2 symmetry imposition is not straightforward, as higher ℤ𝑛 symmetries could play a
similar role. Additionally, theoretical arguments suggest that discrete symmetries should have
a dynamical origin[86], such as a global U(1) symmetry, preventing issues like the formation of
domain walls[87].

The Scotogenic model has undergone various extensions[88–90], all leveraging the involve-
ment of new particles from the dark sector within loops to induce neutrino masses. Extensions
encompass scenarios where the dark matter symmetry aligns with a U(1) gauge symmetry[91] or
originates from lepton number conservation[92]. Additionally, extensions have explored SU(5)
gauge interactions[93], SU(5) unification[94], the inverse seesaw mechanism[95], and the origin
of lighter generations of lepton and quark masses[96].

Motivated by the non-observation of neutrinoless double beta decay and the conservation of
total lepton number as a robust symmetry in nature, we introduce an extension of the Scotogenic
model. This extension elevates lepton number to the status of an U(1)𝐿 gauge symmetry, which
is spontaneously broken by three units. Consequently, a new set of leptons with appropriate
quantum numbers is introduced to cancel anomalies in the model.

4.1 Gauged Lepton number

In the minimal Standard Model, both baryon number (𝐵) and lepton number (𝐿) emerge as
accidental global symmetries. However, as demonstrated in Chapter 2, these symmetries are
anomalous in the SM, necessitating specific conditions for the gauging of either symmetry. No-
tably, 𝐵 − 𝐿 can be gauged by introducing a singlet right-handed neutrino (𝜈𝑅) per family.
When allowing 𝐵 and 𝐿 to vary among different families, the requirement for an anomaly-free
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U(1)𝑋 gauge symmetry is expressed as[97]:3∑𝑖=1(3𝑛𝑖 + 𝑛′𝑖) = 0, (4.1)

where 𝑛𝑖 and 𝑛′𝑖 denote the U(1)𝑋 values for each quark and lepton family.

The independent gauging of 𝐵 and 𝐿[98] becomes feasible with the introduction of new
fermions. Given that 𝜈𝑅 is a novel addition, its assignment under U(1)𝐿 is not constrained
to match that of 𝜈𝐿, which must align with charged leptons. This introduces the interesting
possibility that neutrinos naturally emerge as light Dirac fermions. To prevent 𝜈𝑅 from acquiring
a Majorana mass, U(1)𝐿 must remain unbroken by any single scalar with a U(1)𝐿 charge double
that of 𝜈𝑅.

A U(1) symmetry only admits ℤ𝑛 subgroups, where in this case we denote as ℤ𝑛 the cyclic
group of 𝑛 elements. This group is characterized by the following property: if 𝑔 is an element
of the group different from the identity, then 𝑔𝑛+1 = 𝑔. This type of groups only admit one-
dimensional irreducible representations, which are usually represented by 𝜔 = exp (2𝜋𝑙)/𝑛, with𝜔𝑛 = 1. There are two possible cases depending on how lepton number ir broken to a ℤ𝑛
subgroup:

• If U(1)𝐿 → ℤ𝑛 = ℤ2𝑘+1, with 𝑘 an integer such that 𝑘 ≥ 1, then neutrinos are Dirac
particles.

• If U(1)𝐿 → ℤ𝑛 = ℤ2𝑘, with 𝑘 an integer such that 𝑘 ≥ 1, then neutrinos could be Dirac or
Majorana particles.

In the latter case, there is possible to separate two possible scenarios, depending on the charges
of neutrinos under the unbroken ℤ2𝑘 symmetry[99]:

• If 𝜈 ∼ 𝜔𝑘 under ℤ2𝑘, then neutrinos are Majorana particles.

• If 𝜈 ≁ 𝜔𝑘 under ℤ2𝑘, then neutrinos are Dirac particles.

Therefore, from a symmetry point of view, there are more possibilities that lead to Dirac neutri-
nos than Majorana. This is in contrast from the common idea thar neutrinos should be Majorana
particles due to their complete charge neutrality.

The basic setup provided by the standard model is listed in table 4.1
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Field SU(3)𝐶 SU(2)𝑊 U(1)𝑌 U(1)𝐿 𝜔2𝐿𝑄𝑖𝐿 3 2 1/6 0 1𝑢𝑖𝑅 3 1 2/3 0 1𝑑𝑖𝑅 3 1 −1/3 0 1𝐿𝑖𝐿 1 2 −1/2 1 𝜔2𝑒𝑖𝑅 1 1 −1 1 𝜔2𝐻 1 2 1/2 0 1
Table 4.1: Standard Model fermions and scalars and their gauge transformation properties and the

global 𝐿.
The remnant symmetry of our model will be ℤ6, which allows the neutrinos of our model

to be Dirac particles as expected. The additional particles of our model are listed in table 4.2.
Some additions to the matter content are needed to ensure anomaly cancellation. We have
included three new charged fields under 𝐿: in the scalar sector, a doublet 𝜂, and the singlets 𝜙
and 𝜎. In the fermionic field, we have added the right-handed neutrinos 𝜈𝑎𝑅 and 𝜈3𝑅, the gauge
singlets 𝑆𝑖𝐿 and 𝑆𝑖𝑅, and the fields 𝑛𝑅 and 𝑛𝐿. Note that, in contrast with other related works
where the chosen lepton number is integer for the new scalar fields, here we have decided to
assign half-integer lepton number to 𝜂 and 𝜎.

Field SU(3)𝐶 SU(2)𝑊 U(1)𝑌 U(1)𝐿 𝜔2𝐿𝜈𝑎𝑅 1 1 0 4 𝜔2𝜈3𝑅 1 1 0 −5 𝜔2𝐿′𝐿 1 2 −1/2 𝑙 − 3 𝜔2𝑙𝑒′𝑅 1 1 −1 𝑙 − 3 𝜔2𝑙𝑛𝑅 1 1 0 𝑙 − 3 𝜔2𝑙𝐿′′𝑅 1 2 −1/2 𝑙 𝜔2𝑙𝑒′′𝐿 1 1 −1 𝑙 𝜔2𝑙𝑛𝐿 1 1 0 𝑙 𝜔2𝑙𝑆𝑖𝐿 1 1 0 1/2 𝜔𝑆𝑖𝑅 1 1 0 1/2 𝜔𝜙 1 1 0 3 1𝜂 1 2 1/2 −1/2 𝜔5𝜎 1 1 0 −7/2 𝜔5
Table 4.2: Our SM extension: new fields and their symmetry properties.

We note the first set of new fermions, which is a sequential generation of fermions with lepton
number 𝐿 = 𝑙 − 3. The second set of fermions with opposite chirality has lepton number 𝑙. This
is necessary, since the difference of 3 is required by anomaly cancellation. We show how the
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chosen model is free of anomalies:[SU(2)𝑊]2 U(1)𝐿 ∶ 3(3)(1/6) + (1/2)[−3] = 0,[U(1)𝑌]2 U(1)𝐿 ∶ 3[2(−1/2)2 − (−1)2] + 2(−1/2)2(𝑙 − 3 − 𝑙) + (−1)2𝑙 − (−1)2(𝑙 − 3) = 0,
U(1)𝑌[U(1)𝐿]2 ∶ 3[2(−1/2) − (−1)] + 2(−1/2)[(𝑙 − 3)2 − 𝑙2] − 𝑙2 − (−1)(𝑙 − 3)2 = 0,[U(1)𝐿]3 ∶ 3[2 − 1] − 2(4)3 − (−5)3 + 2[(𝑙 − 3)3 − 𝑙3] + 𝑙3 − (𝑙 − 3)3+ [𝑙3 − (𝑙 − 3)3] + [(1/2)3 − (1/2)3] = 0,

U(1)𝐿 ∶ 3[2 − 1] − 2(4) − (−5) + 2[(𝑙 − 3) − 𝑙] + 𝑙 − (𝑙 − 3) + [𝑙 − (𝑙 − 3)]+ [(1/2) − (1/2)] = 0.
(4.2)

The singlet scalar 𝜙 of our model is the responsible for the spontaneous breaking of lepton number
gauge symmetry. Note that because of the selected 𝐿 charges of the right-handed neutrinos, the
SM Higgs 𝐻 does not connect 𝜈𝐿 with 𝜈𝑅. Therefore, the neutrinos do not get mass from the
standard electroweak symmetry breaking.

4.1.1 Scalar spectrum

Given the fields and symmetries of our model, we can construct the simplest scalar potential,
which is given by:𝑉 = ∑𝑠=𝐻,𝜙,𝜂,𝜎 [𝜇2𝑠(𝑠†𝑠) + 𝜆𝑠(𝑠†𝑠)2] + 𝜆𝐻𝜂(𝐻†𝐻)(𝜂†𝜂) + 𝜆′𝐻𝜂(𝐻†𝜂)(𝜂†𝐻) (4.3)+𝜆𝐻𝜎(𝐻†𝐻)(𝜎∗𝜎) + 𝜆𝐻𝜙(𝐻†𝐻)(𝜙∗𝜙) + 𝜆𝜂𝜎(𝜂†𝜂)(𝜎∗𝜎) + 𝜆𝜂𝜙(𝜂†𝜂)(𝜙∗𝜙)+𝜆𝜎𝜙(𝜎∗𝜎)(𝜙∗𝜙) + 𝜇4√2(𝜂†𝐻𝜎𝜙 + h.c) ,
where the mass parameter 𝜇4 is assumed real for simplicity. From 𝑉 it can be noted that 𝜙 breaks
U(1)𝐿 by three units. After EWSB there is a remnant gauge discrete symmetry ℤ6 with charges𝜔2𝐿, where 𝜔 = exp (2𝜋𝑖/3). Both the fields 𝐻 and 𝜙 will acquire a vev. The CP-even field
of the neutral component of 𝐻 acquires a mass 𝑚2ℎ0 = 2𝜆𝐻𝑣2, and is identified with the Higgs
boson, which was observed in 2012 at LHC with a mass of 125 GeV. The remaining components
of 𝐻 are absorbed by the gauge sector via the Higgs mechanism, generating the bosons 𝑊 ± and𝑍.

The dark sector will be formed by the rest of the scalar fields which are odd under matter
parity, and hence do not acquire a vev. The scalar doublets can be expanded into components
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according to 𝐻 = ( ℎ+𝑣+𝑠+𝑖𝑎√2 ) , 𝜂 = ( 𝜂+𝜂𝑅+𝑖𝜂𝑖√2 ) , (4.4)

where 𝑣/√2 represents the vev acquired by the neutral component of 𝐻. We have also decom-
posed 𝜂0 in real and imaginary parts. The field 𝜙 is written as𝜙 = 𝑤 + 𝜙𝑟 + 𝑖𝜙𝑖√2 , (4.5)

where ⟨𝜙⟩ = 𝑤/√2 represents the vev acquired by the real component of 𝜙 after lepton number
is broken, and is the only new dimensional scale introduced, with all of the other parameters
being dimensionless couplings.
The expectation values can be determined from the minimization condition𝜕𝑉𝜕𝑠 ∣𝐻=⟨𝐻⟩𝜙=⟨𝜙⟩ = 𝜕𝑉𝜕𝜙𝑟 ∣𝐻=⟨𝐻⟩𝜙=⟨𝜙⟩ = 0. (4.6)

The minimization condition of the scalar potential yields the following relations:𝜇2𝐻 = −12 (2𝑣2𝜆𝐻 + 𝑤2𝜆𝐻𝜙) , (4.7)𝜇2𝜙 = −12 (𝑣2𝜆𝐻𝜙 + 2𝑤2𝜆𝜙) .
The first component of the scalar doublet 𝜂 corresponds to a massive charged scalar field, 𝜂±,
whose mass is 𝑚2𝜂± = 𝜇2𝜂 + 𝜆𝐻𝜂𝑣22 + 𝜆𝜂𝜙𝑤22 . (4.8)

The spontaneous symmetry breaking induces a mixing between the fields 𝑠 and 𝜙𝑟, given by the
matrix 𝑀2𝑠,𝜙𝑟 = ( 2𝜆𝐻𝑣2 𝜆𝐻𝜙𝑣𝑤𝜆𝐻𝜙𝑣𝑤 2𝜆𝜙𝑤2 ) . (4.9)

The previous matrix can be diagonalized via( 𝜑1𝜑2 ) = ( cos 𝜃 sin 𝜃− sin 𝜃 cos 𝜃 ) ( 𝑠𝜙𝑟 ) , (4.10)

with
tan 2𝜃 = 𝑣𝑤𝜆𝐻𝜙𝑤2𝜆𝜙 − 𝑣2𝜆𝐻 . (4.11)

This is the mixing angle that parametrizes the mixing between the real singlet components of
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𝐻 and 𝜙. This mixing is a consequence of the presence of the ’Higgs portal’ coupling 𝜆𝐻𝜙.
The fields 𝜑1 and 𝜑2 are the mass eigenstates. Their masses are found upon diagonalizing the
previous matrix. The resulting mass eigenstates are𝑚𝜑1,𝜑2 = 𝜆𝐻𝑣2 + 𝜆𝜙𝑤2 ∓ √𝜆2𝐻𝑣4 − 2𝜆𝐻𝜆𝜙𝑣2𝑤2 + 𝜆2𝐻𝜙𝑣2𝑤2 + 𝜆2𝜙𝑤4. (4.12)

The coupling 𝜆𝐻𝜙 leads to a tree shift in the Higgs quartic coupling[100], which provides a
mechanism to stabilize the vacuum in the presence of the exotic charged leptons with large
Yukawa couplings to the Higgs. It has also been shown to be a particularly efÏcient stabilization
mechanism when 𝑚𝜑2 ≫ 𝑚𝜑1 , even for small mixing angles[101]. The fields 𝜂0 and 𝜎 acquire a
vev mix arising from (𝜂0, 𝜎)𝑀2𝜑(𝜂0, 𝜎)†, where

𝑀2𝜑 = 12 ( 2𝜇2𝜂 + 𝜆′𝐻𝜂𝑣2 + 𝜆𝐻𝜂𝑣2 + 𝜆𝜂𝜙𝑤2 𝜇4𝑣𝑤√2𝜇4𝑣𝑤√2 2𝜇2𝜎 + 𝜆𝐻𝜎𝑣2 + 𝜆𝜎𝜙𝑤2 ) . (4.13)

Upon diagonalizing the mass matrix above, we find two complex neutral scalars in the spectrum( 𝜑01𝜑02 ) = ( cos 𝜃 sin 𝜃− sin 𝜃 cos 𝜃 ) ( 𝜂0𝜎 ) (4.14)

where
tan (2𝜃) = √2𝜇4𝑣𝑤2(𝜇2𝜂 − 𝜇2𝜎) + 𝑣2(𝜆′𝐻𝜂 + 𝜆𝐻𝜂 − 𝜆𝐻𝜎) + 𝑤2(𝜆𝜂𝜙 − 𝜆𝜎𝜙) (4.15)

The mass eigenvalues of previous states are given by𝑚2𝜑01,2 = 14 [2(𝜇2𝜂 + 𝜇2𝜎) + 𝑣2(𝜆′𝐻𝜂 + 𝜆𝐻𝜂 + 𝜆𝐻𝜎) + 𝑤2(𝜆𝜂𝜙 + 𝜆𝜎𝜙) (4.16)− √(2(𝜇2𝜂 − 𝜇2𝜎) + 𝑣2(𝜆′𝐻𝜂 + 𝜆𝐻𝜂 − 𝜆𝐻𝜎) + 𝑤2(𝜆𝜂𝜙 − 𝜆𝜎𝜙))2 + 2𝜇24𝑣2𝑤2] .(4.17)
In Eq. 4.13 the real and imaginary parts of the scalar fields appear together, that is, real and
imaginary part are degenerate in mass. That means that, if dark matter is scalar, it is described
by a complex field, in contrast with conventional scotogenic scenarios, in which they are nearly
degenerate but not exactly so.
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4.1.2 Gauge sector

There is a new gauge boson 𝑍𝐿 associated to U(1)𝐿. We consider the unitary gauge, and use⟨𝐻⟩ = ( 0𝑣√2 ) , ⟨𝜙⟩ = 𝑤√2. (4.18)

The covariant derivative is defined as𝐷𝜇 = 𝜕𝜇 + 𝑖𝑔𝜏𝑖𝑊 𝜇𝑖 + 𝑖𝑔′𝑌 𝐵𝜇 + 𝑖𝑔𝐿𝐿𝑍𝜇𝐿, (4.19)

and we also make use of the definition𝑊 ±𝜇 = 1√2 (𝑊𝜇1 ∓ 𝑖𝑊𝜇2) , (4.20)

to study the interactions of 𝑍𝜇𝐿, which are encoded in the following Lagrangian densityℒ𝑍𝐿 ⊃ (𝐷𝜇𝐻)† (𝐷𝜇𝐻) + (𝐷𝜇𝜙)† (𝐷𝜇𝜙) = 18𝑣2 [(𝑔𝑊 𝜇3 − 𝑔′𝐵𝜇)2 + 2𝑔2𝑊 𝜇+𝑊 −𝜇 ]+18 (36𝑔2𝐿𝑤2𝑍𝜇𝐿𝑍𝐿𝜇) . (4.21)

The previous Lagrangian contains additional terms, such as 𝜖2𝑍𝜇𝜈𝐿 𝐵𝜇𝜈, �̄�𝐿𝛾𝜇𝐷𝜇𝐿𝐿, �̄�′𝐿𝛾𝜇𝐷𝜇𝐿′𝐿,�̄�′′𝑅𝛾𝜇𝐷𝜇𝐿′′𝑅, where 𝑍𝜇𝜈𝐿 and 𝐵𝜇𝜈 are the U(1)𝐿 and U(1)𝑌 field strength tensors, respectively.
There is no 𝛿𝑀2𝑍𝐿𝜇𝑍𝜇 term since 𝜙 is not charged under the SM, and the Higgs has 𝐿 = 0.
The left handed SM lepton doublets 𝐿𝐿 couple to 𝑍𝐿, and because of the U(1) kinetic mixing𝑍 − 𝑍𝐿, there is a 𝐵𝜇 − 𝑍𝜇𝐿 coupling parametrized by 𝜖[102]. As it was noted in [103], the
strongest bound on 𝑍𝐿 comes from LEP II data[104]:𝑤 ≥ 1.7 TeV, (4.22)

which is roughly independent of the 𝑔𝐿 value.
The imposition of 𝜖 = 0 at tree level through symmetries is possible, although in general it is a
free parameter of the theory and is additively renormalized by loops of leptons. The inclusion
of this term causes that after lepton and electroweak symmetry breaking the 𝑍 − 𝑍𝐿 mixing is
parametrized by

tan 2𝜉 = 2𝑀2𝑍𝑠𝑤𝜖√1 − 𝜖2𝑀2𝑍𝐿 − 𝑀2𝑍(1 − 𝜖2) + 𝑀2𝑍𝑠2𝑤𝜖2 , (4.23)
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where 𝜉 is the 𝑍𝐿 − 𝑍 mixing angle, 𝑀𝑍 and 𝑀𝑍𝐿 are the masses of 𝑍 and 𝑍𝐿 respectively, and𝑠𝑤 is the sine of the weak angle.

In the following calculations, we take 𝜖 = 0 at tree level and set the scale of U(1)𝐿 symmetry
breaking at its lower bound 𝑤 = 1.7 TeV. With these considerations, we rewrite the following
term 18𝑣2 (𝑔𝑊 𝜇3 − 𝑔′𝐵𝜇)2 = 𝑔2 + 𝑔′28 𝑣2 (𝑔𝑊 𝜇3 − 𝑔′𝐵𝜇√𝑔2 + 𝑔′2 )2 . (4.24)

We can reduce this term by noticing that

(𝑔𝑊 𝜇3 − 𝑔′𝐵𝜇√𝑔2 + 𝑔′2 )2 = 1𝑔2 + 𝑔′2 ( 𝑊 𝜇3 𝐵𝜇 ) ( 𝑔2 −𝑔𝑔′−𝑔𝑔′ 𝑔′2 ) ( 𝑊𝜇3𝐵𝜇 ) , (4.25)

which can be diagonalized by an orthogonal transformation of the form:( 𝑊𝜇3𝐵𝜇 ) = ( 𝑐𝑊 𝑠𝑊−𝑠𝑊 𝑐𝑊 ) ( 𝑍𝜇𝐴𝜇 ) , (4.26)

where 𝑐𝑊 ≡ cos 𝜃𝑊, 𝑠𝑊 ≡ sin 𝜃𝑊, and 𝜃𝑊 is the weak (or Weinberg) angle. The weak angle can
be determined explicitly as follows:

(𝑔𝑊 𝜇3 − 𝑔′𝐵𝜇√𝑔2 + 𝑔′2 )2
= 1𝑔2 + 𝑔′2 ( 𝑍𝜇 𝐴𝜇 ) ( 𝑐𝑊 −𝑠𝑊𝑠𝑊 𝑐𝑊 ) ( 𝑔2 −𝑔𝑔′−𝑔𝑔′ 𝑔′2 ) ( 𝑐𝑊 𝑠𝑊−𝑠𝑊 𝑐𝑊 ) ( 𝑍𝜇𝐴𝜇 )= 1𝑔2 + 𝑔′2 ( 𝑍𝜇 𝐴𝜇 )( (𝑔𝑐𝑊 + 𝑔′𝑠𝑊)2 −𝑔𝑔′ cos 2𝜃𝑊 + (𝑔2−𝑔′2)2 sin 2𝜃𝑊−𝑔𝑔′ cos 2𝜃𝑊 + (𝑔2−𝑔′2)2 sin 2𝜃𝑊 (𝑔𝑠𝑊 − 𝑔′𝑐𝑊)2 ) ( 𝑍𝜇𝐴𝜇 ) .

(4.27)

From the diagonal condition, we obtain:

tan 2𝜃𝑊 = 2𝑔𝑔′𝑔2 − 𝑔′2 . (4.28)

By identifying 𝐴𝜇 with the massless photon, we find:

tan 𝜃𝑊 ≡ 𝑡𝑊 = 𝑔′𝑔 . (4.29)
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The solution to both equations is𝑠𝑊 = 𝑔′√𝑔2 + 𝑔′2 , 𝑐𝑊 = 𝑔√𝑔2 + 𝑔′2 . (4.30)

In terms of the physical gauge bosons, we obtain(𝐷𝜇𝐻)† (𝐷𝜇𝐻) + (𝐷𝜇𝜙)† (𝐷𝜇𝜙) = 𝑔24 𝑣2𝑊 𝜇+𝑊 −𝜇 + (𝑔2 + 𝑔′2)8 𝑣2𝑍𝜇𝑍𝜇 + 92𝑔2𝐿𝑤2𝑍𝜇𝐿𝑍𝐿𝜇. (4.31)

We can identify from the previous expression the mass terms:𝑀2𝑊 = 𝑔2𝑣24 , 𝑀2𝑍 = (𝑔2 + 𝑔′2) 𝑣24 , 𝑀2𝑍𝐿 = 9𝑔2𝐿𝑤2 (4.32)

4.1.3 Scotogenic neutrino masses

The Yukawa Lagrangian is−𝐿𝑌 =𝑦𝑒𝐿𝐿𝐻𝑒𝑅 + 𝑦𝑢𝑄𝐿𝐻𝑢𝑅 + 𝑦𝑑𝑄𝐿𝐻𝑑𝑅 + 𝑦𝜈𝐿𝐿𝑆𝑅 ̃𝜂 + ℎ𝑆𝐿𝜈𝑅𝜎 + 𝑀𝐷𝑆 𝑆𝐿𝑆𝑅+ 𝑦𝑒′1 𝑒″𝐿𝐻†𝐿″𝑅 + 𝑦𝑒′2 𝐿′𝐿𝐻𝑒′𝑅 + 𝑦𝑒′3 𝑒″𝐿𝜙𝑒′𝑅 + 𝑦𝑒′4 𝐿′𝐿𝜙∗𝐿″𝑅+ 𝑦𝑛1 𝑛𝐿𝐻†𝐿″𝑅 + 𝑦𝑛2 𝐿′𝐿𝐻𝑛𝑅 + 𝑦𝑛3 𝑛𝐿𝜙𝑛𝑅 + h.c., (4.33)

where 𝐻 = 𝑖𝜏2𝐻∗. We also need to note that ℎ𝑘3 = 0 since only the terms 𝜈𝑎𝑅 participate in
the neutrino mass generation mechanism, due to the assigned chiral charges of the right handed
neutrinos (4, 4, −5). Therefore, this mechanism gives mass to two of the SM neutrinos. The 𝜈3𝑅
remains massless and decouples from the rest of the model. Additional terms could be included
in the Lagrangian depending on the value of 𝑙, but we leave this value unspecified to restrict
the analysis to the minimal number of terms. If we were to choose specific values for 𝑙, we
must do the assignments in such a way that we do not allow tree-level couplings of the form𝑛𝐿 (𝜈𝐿𝐻0 − 𝑒𝐿𝐻+) and similar. The selected U(1)𝐿 charge for 𝑝ℎ𝑖 also avoids that a heavy
stable lepton with unacceptably large couplings to 𝑍 or 𝐻 appears.

In addition, one can note that in the limit that the Yukawa couplings 𝑦𝑒′3 ,𝑦𝑒′4 ,𝑦𝑛3 → 0, one
recovers the global symmetries which in this case separately preserves 𝐿, 𝑙 and 𝑙−3. As a result,
it results natural that these couplings satisfy 𝑦𝑖 ≪ 1, implying that vector-like masses for the
new leptons much smaller than 𝑤 are natural. Furthermore, the small values of the rest of the
new lepton couplings 𝑦𝑒′𝑖 , 𝑦𝑛𝑖 are also natural.

Neutrino masses are not generated at the tree level, they arise as a calculable one-loop
contribution via the diagram in Fig. 4.1.
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⟨𝐻⟩ ⟨𝜙⟩

𝐿𝐿 𝑆𝑅 𝑆𝐿 𝜈𝑎𝑅
𝜂 𝜎

Figure 4.1: One-loop diagram for neutrino masses.

The expression for the neutrino mass matrix in the scotogenic model can be formulated in
terms of the one-loop Passarino-Veltman function 𝐵0[105–107]:(𝑚𝜈)𝑖𝑗 = sin 2𝜃32𝜋2 ∑𝑘,𝑎 𝑦𝜈𝑖𝑘ℎ𝑘𝑗𝑚𝑆𝑘(−1)𝑎𝐵0 (0, 𝑚2𝑎, 𝑚2𝑆𝑘) , (4.34)

Here, 𝑚𝑆𝑘 represents the eigenvalues of the Dirac mass matrix 𝑀𝐷𝑆 , 𝑚𝑖 (for 𝑖 = 𝜑1, 𝜑2) are the
previously found eigenvalues 𝑚𝜑01,2 of the mass eigenbasis of the rotated fields 𝜂0 and 𝜎, sin 2𝜃
corresponds to their mixing angle given in Eq. 4.15, and 𝐵0 is defined as:𝐵0 (0, 𝑚2𝑎, 𝑚2𝑆𝑘) = Δ𝜀 + 1 − 𝑚2𝑎 log𝑚2𝑎 − 𝑚2𝑆𝑘 log𝑚2𝑆𝑘𝑚2𝑎 − 𝑚2𝑆𝑘 , (4.35)

where Δ𝜀 diverges in the limit 𝜀 → 0. Expanding the previous result, it takes the form:

(𝑚𝜈)𝑖𝑗 = sin 2𝜃32𝜋2 ∑𝑘 𝑦𝜈𝑖𝑘ℎ𝑘𝑗𝑚𝑆𝑘 [ 𝑚2𝜑1𝑚2𝜑1 − 𝑚2𝑆𝑘 ln
𝑚2𝜑1𝑚2𝑆𝑘 − 𝑚2𝜑2𝑚2𝜑2 − 𝑚2𝑆𝑘 ln

𝑚2𝜑2𝑚2𝑆𝑘 ] . (4.36)

Concerning dark matter stability in this particular model, we observe that the lightest particle
inside the loop is stable. This holds true for both the cases the fermionic and scalar dark matter
candidates. All the particles in the internal loop are odd under the remnant ℤ6, while the SM
particles are even. This implies that any combination of SM fields will be even under the residual
subgroup, forbidding all effective operators leading to dark matter decay and preventing mixing
with the SM leptons.

4.1.4 Comments and ongoing work

In the ongoing development of this thesis, we are concurrently working on a companion paper
that will extend certain aspects covered in this thesis, with a primary focus on the phenomeno-
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logical facets of our theoretical framework. In this section, we provide a comprehensive overview
of the essential theoretical foundations necessary for the ongoing study. Furthermore, we engage
in a discourse on the anticipated outcomes and implications within the framework of our model.

In the preceding section, we discussed the possibility of the dark matter candidate being
either scalar or fermionic. In the case of a scalar dark matter candidate, the stability criterion
designates the lightest among the scalars 𝜑01 and 𝜑02 as stable, assuming the role of dark matter.
Consistency with direct detection experiments necessitates a very small coupling between the
complex dark matter candidate and the Z-boson. This can be achieved through minimal mixing
between 𝜑01 and 𝜑02, where the lightest state is 𝜑02, predominantly representing the scalar singlet𝜎.

While an in-depth examination of the properties of dark matter candidates is beyond the
scope of this work, it will be thoroughly explored in the forthcoming paper. In that paper, we
will demonstrate how one can satisfy direct detection constraints and achieve the required relic
density. The dark matter candidates may exhibit couplings to the new gauge boson 𝑍𝐿 and the
new scalars, potentially yielding the right annihilation cross sections near resonance. There is
enough freedom to possibly satisfy the the direct detection constraints coming from experiments.

Moreover, this model encompasses various components that may contribute to explaining
the baryon asymmetry of the universe. Our current construction inherently includes new mas-
sive states and interactions with CP-violating phases. Consequently, it is intriguing to explore
whether this model can effectively explain both the baryon asymmetry and dark matter. The
WIMP in this model is a Dirac fermion, offering the potential to realize a theory involving
asymmetric dark matter.

If DM consists of WIMPs, it could be the case that DM particles are produced at the LHC and
subsequently escape the detectors. For this reason, there are several collaborations dedicated
to the search for events where large missing energy is the dominant discriminating signature
of DM. In addition, the DM abundance in our universe is likely to be fixed by the thermal
freeze-out phenomenon: DM particles, initially present in our universe in thermal equilibrium
abundance, annihilate with one another until chemical equilibrium is lost due to the expansion
of the universe. The present-day relic density of these particles is predictable and, in the simple
case of s-wave self-annihilation of DM in the early universe, it comes out to beΩDMℎ2 ≃ 2 × 2.4 × 10−10GeV−2⟨𝜎𝑣⟩ann

, (4.37)

where ⟨𝜎𝑣⟩ann is the total thermally-averaged annihilation cross section, and the factor of 2 in the
numerator is made explicit to emphasize the fact that we are assuming a non-self-conjugate DM
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particle. This abundance must match the one measured by the Planck collaboration Ωobs
DMℎ2 =0.1199 ± 0.0027.

We do not have enough information about the detailed nature of cold dark matter (CDM)
except for its relic density. There are major experimental efforts for direct and indirect detection
of dark matter particles besides the gravitational effect that it has on the Universe because they
must have some connection to the SM particles. Direct detection probes the scattering of dark
matter off nuclei in the dark matter detectors, while indirect detection investigates the SM final
states from the annihilation of dark matter by cosmic ray detectors.

Curves corresponding to the correct relic abundance serve as benchmark EFT constraints.
Part of the ongoing paper includes an analysis of the annihilation channels and the computation
of the relic abundance for DM candidates to establish allowed mass ranges. To provide a
solid foundation for these calculations, we begin with some general considerations about DM
abundance, working within a set of assumptions.

Relic density constraints on thermal DM are often considered non-robust. For a given pa-
rameter set, the relic density can vary depending on the inclusion of additional annihilation
channels, such as those involving leptons. Conversely, the true relic density might be larger if
the dark sector includes various types of DM. Despite these challenges, under a modest set of
assumptions, relic density constraints can become substantially more powerful. For instance,
in [108], the assumptions include: the DM candidate constitutes 100% of the DM in the uni-
verse, the DM annihilation rate is related to the observed density today through the standard
thermal production mechanism, the dominant annihilation channel is to Standard Model (SM)
fermions via one dark mediator, and the DM couples to u, d quarks, with the coupling to the first
generation of quarks no less than the coupling to other SM fermions. Under these assumptions,
the relic density constraint provides a range within which the dark sector parameters should lie.
The computation of relic density is commonly performed using the software micrOMEGAs[109].

Irrespective of the Dirac or Majorana nature of neutrinos, if U(1)𝐿 breaks to an even residualℤ2𝑛 symmetry, there is an associated 0𝜈2𝑛𝛽 decay allowed by the residual symmetry. If neutrinos
are Dirac particles, the lowest process allowed by ℤ2𝑛 symmetry is 0𝜈2𝑛𝛽 decays, with all other
lower-dimensional processes being forbidden by the residual ℤ2𝑛 symmetry. Regarding our
model, in the exceptional hypothetical case that a 0𝜈6𝛽 decay was observed in future experiments
without positive signals of 0𝜈2𝑘𝛽 decay, with 𝑘 < 3, then neutrinos should be Dirac particles.
The same reasoning can be generalized to higher ℤ𝑚 symmetries and 0𝜈2𝑛𝛽 decays. The notion
that neutrinos are Dirac particles remains viable in the absence of incontrovertible experimental
proof of the existence of neutrinoless double-beta decay.

72



5
Summary and Conclusion
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The minimal Standard Model stands as a remarkable achievement in particle physics, pro-
viding accurate explanations for numerous experimental observations. However, inherent limita-
tions and persisting questions underscore its incomplete nature. The groundbreaking discovery
of neutrino oscillations unveiled the non-negligible masses of neutrinos, challenging the massless
assumption of the Standard Model. Additionally, the model falls short in elucidating the mys-
teries of dark matter, the baryon asymmetry of the universe, and other unresolved phenomena.

Addressing some of these fundamental challenges within the Standard Model, this thesis has
crafted an extension based on the scotogenic model, aiming to address neutrino mass generation
and introduce viable dark matter candidates. The exploration began with an in-depth examina-
tion of neutrino mass generation mechanisms, encompassing the dimension-5 Weinberg operator
and the seesaw mechanisms, capable of generating the Weinberg operator at tree level.

Subsequently, we introduced a minimal extension known as the scotogenic model, where
neutrino masses arise through a one-loop radiative mechanism, accompanied by the inclusion of
dark matter candidates. The versatility of the scotogenic model has led to numerous extensions,
accommodating both Dirac and Majorana neutrinos, and incorporating various modifications
such as altered particle content and the introduction of new symmetries.

Building upon these extensions, our theoretical framework was presented, featuring the gaug-
ing of lepton number U𝐿, spontaneously broken by a scalar singlet 𝜙 acquiring a vacuum ex-
pectation value. This breaking results in a residual discrete ℤ6 symmetry that ensures dark
matter stability. The inclusion of this symmetry necessitated the introduction of new particles
in the scalar and fermionic sectors, their charges under U𝐿, and careful anomaly cancellation
to maintain theoretical consistency. Our model intriguingly ties dark matter stability to the
smallness of neutrino masses.

A dark sector emerges, acting as mediators in the radiative mechanism responsible for neu-
trino mass generation at the one-loop level. The specific choice of 𝐿 charges for right-handed
neutrinos dictates that only two of the three SM neutrinos acquire mass through this mecha-
nism, leaving the third right-handed neutrino massless and decoupled from the rest of the model.

An additional consequence is the appearance of a new gauge boson 𝑍𝐿, for which we dis-
cussed interactions and computed the mass term. The most plausible dark matter candidate is
the lightest of the internal loop particles, odd under the ℤ6 symmetry, with potential scalar or
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fermionic nature. Our model predicts Dirac neutrinos and upholds lepton number conservation.

Despite years of investigation, the true nature and mass generation mechanism of neutri-
nos remain elusive. Neutrinos might be either Majorana or Dirac particles, and their character
may be revealed through observations of lepton number-violating processes such as neutrinoless
double-beta decay.

Emphasizing the importance of exploring diverse neutrino mass mechanisms and dark matter
candidates, even in marginally viable models, this thesis contributes to the ongoing pursuit of
answers. While uncertainties persist, we expect from the acquisition of new data to exclude
certain models, gradually narrowing down the viable theories explaining neutrino masses and
the nature of dark matter. Until these mysteries are unraveled, it remains uncertain whether
dark matter’s nature is intricately linked to the smallness of neutrino masses. We anticipate
that as answers unfold, they may lead to new questions and avenues for exploration.
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