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Resumen

Una experiencia inmersiva puede definirse como el resultado sensorial, perceptual y
emocional que experimenta un usuario al interactuar con un sistema capaz de generar una
sensación de presencia en un entorno artificial. Una inmersión compartida, en contraste,
se refiere a la posibilidad de mantener experiencias inmersivas de manera conjunta entre
múltiples usuarios, ya sea en espacios locales o remotos, de forma simultánea, síncrona o
asíncrona.

Actualmente, la colaboración inmersiva enfrenta exigencias técnicas que se intensifican
en entornos con dispositivos heterogéneos, donde las diferencias en capacidades de segui-
miento, visualización e interacción pueden comprometer la coherencia de la experiencia.
Aunque en la literatura se han propuesto soluciones a estos retos, la mayoría se basan en
arquitecturas centralizadas que, si bien son funcionales, presentan limitaciones críticas que
nos obligan a plantearnos la pregunta: ¿Deberían las arquitecturas centralizadas seguir
siendo el eje principal de la colaboración inmersiva?

Esta obra plantea que un paradigma de colaboración descentralizado podría superar
dichas limitaciones, ofreciendo mejoras en la latencia, la robustez y la integración multi-
modal. Para validar esta hipótesis, se diseñaron, implementaron y evaluaron dos arquitec-
turas distribuidas para la colaboración entre sistemas de realidad aumentada y realidad
virtual: una centralizada y otra descentralizada. Las pruebas se realizaron bajo las mis-
mas condiciones en cuanto a latencia, replicación y coherencia espacial entre dispositivos
heterogéneos.

Los resultados obtenidos evidencian el potencial de las arquitecturas descentralizadas
como alternativa viable para la colaboración inmersiva, representando una base sólida para
futuras investigaciones en sistemas XR.
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Abstract

An immersive experience can be defined as the sensory, perceptual, and emotional
outcome that a user undergoes when interacting with a system capable of generating a
sense of presence within an artificial environment. In contrast, a shared immersion refers to
the possibility of sustaining immersive experiences jointly among multiple users, whether
in local or remote spaces, simultaneously, synchronously, or asynchronously.

Currently, immersive collaboration faces technical demands that intensify in environ-
ments with heterogeneous devices, where differences in tracking, visualization, and interac-
tion capabilities may compromise the coherence of the experience. Although the literature
has proposed solutions to these challenges, most rely on centralized architectures which,
while functional, present critical limitations that compel us to ask: Should centralized
architectures continue to be the main axis of immersive collaboration?

This work argues that a decentralized collaboration paradigm could overcome such li-
mitations, offering improvements in latency, robustness, and multimodal integration. To
validate this hypothesis, two distributed architectures for collaboration between augmented
reality and virtual reality systems were designed, implemented, and evaluated: one cen-
tralized and the other decentralized. The tests were conducted under identical conditions
regarding latency, replication, and spatial coherence among heterogeneous devices.

The results obtained highlight the potential of decentralized architectures as a viable
alternative for immersive collaboration, representing a solid foundation for future research
in XR systems.
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Abreviaciones y siglas

Sigla Término completo Descripción contextual

RA Realidad Aumentada Tecnología que superpone elementos digitales
sobre el entorno físico en tiempo real.

RV Realidad Virtual Tecnología que genera entornos completamente
digitales, inmersivos y simulados.

RM Realidad Mixta Integración de RA y RV, donde objetos físicos
y virtuales coexisten e interactúan.

XR Realidad eXtendida Término paraguas que engloba RA, RV y RM.

HMD Head-Mounted Display Dispositivo montado en la cabeza que permite
visualizar entornos virtuales o aumentados.

IP Internet Protocol Protocolo que identifica y direcciona dispositi-
vos en una red para el envío de paquetes.

SDK Software Development Kit Conjunto de herramientas y librerías para desa-
rrollar aplicaciones específicas.

P2P Peer-to-Peer Arquitectura de red donde los dispositivos se co-
munican directamente sin una entidad central.

TCP Transmission Control Protocol Protocolo de transporte con conexión, garanti-
zando entrega ordenada y direccionamiento.

UDP User Datagram Protocol Protocolo de transporte sin conexión, rápido pe-
ro sin garantía de entrega, ideal para datos sen-
sibles al tiempo.
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Capítulo 1

Introducción a la colaboración
inmersiva

En este capítulo se presenta un panorama general de la Realidad Aumentada (RA) y
la Realidad Virtual (RV) como sistemas colaborativos. Se examinan los antecedentes más
representativos que permitieron la creación y la evolución de este campo, destacando los
principales retos que enfrenta la nueva generación de este tipo de experiencias. Posterior-
mente, se sugiere la creación de un nuevo marco conceptual de colaboración, el principal
aporte de este trabajo. Como cierre, se resume la organización general de la tesis, señalan-
do cómo contribuye cada capítulo al cumplimiento de la hipótesis y los objetivos de esta
investigación.

1.1. De experiencias aisladas a la colaboración

La RA y la RV han pasado de ser experiencias aisladas a convertirse en la próxima
generación de herramientas colaborativas [1]. Su capacidad de complementar o reemplazar
la percepción del entorno físico ha abierto nuevos paradigmas de aprendizaje [2], diseño [3],
comunicación y difusión del conocimiento [4]. Sin embargo, en paralelo a su crecimiento, la
aparición de ecosistemas inmersivos cada vez más complejos se vuelve evidente, haciéndose
necesaria la ubicuidad entre sus distintas modalidades de interacción; una integración
de experiencias híbridas entre RA y RV, habitualmente enmarcadas bajo el término de
Realidad eXtendida (XR).

XR es un concepto que generaliza la noción de Realidad Mixta (RM), así como to-
das sus posibles modalidades o variantes, a lo largo del continuo de virtualidad descrito
por Milgram [5]. Al extender su campo de aplicación a áreas como la educación [6, 7], la
medicina [8], el diseño industrial o la capacitación remota [9], entre otras, se han identi-
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CAPÍTULO 1. INTRODUCCIÓN A LA COLABORACIÓN INMERSIVA 2

ficado limitaciones que afectan la fluidez, la experiencia y la calidad de la colaboración.
Para ilustrar estas limitaciones, considérese, como ejemplo, un escenario en el que coinci-
den usuarios equipados con visores de RV, dispositivos móviles con RA y computadoras
de escritorio convencionales. Esta diversidad de dispositivos, con diferencias en capacidad
de cómputo, sensado, visualización e interacción, se denomina entorno heterogéneo. Si las
disparidades de este entorno no se contemplan en el diseño de un sistema colaborativo, la
experiencia compartida entre los usuarios se fragmenta, la colaboración se debilita, además
la sensación de presencia y coherencia espacial se reduce [10, 11].

Para este tipo de escenarios híbridos, los desafíos encontrados en la literatura espe-
cializada se agrupan generalmente como tres retos centrales a resolver: (i) alcanzar una
sincronización precisa entre las plataformas involucradas (colaboración en tiempo real);
(ii) garantizar interoperabilidad entre los dispositivos dispares (heterogeneidad); y (iii) di-
señar modelos de interacción que puedan sostener tanto configuraciones simétricas como
asimétricas (multimodales) [12, 13].

Una solución ampliamente adoptada para abordar estos retos ha sido el uso de ar-
quitecturas centralizadas como núcleo de la colaboración [14, 15, 16]. En este tipo de
arquitecturas, un servidor, también conocido como nodo maestro o dispositivo central, se
encarga de sincronizar y distribuir los datos entre todos los usuarios, una solución que
ha demostrado ser efectiva al mantener la coherencia e intermediar en la resolución de
conflictos. Plataformas comerciales como Photon Engine [17], Unity Netcode [18], Mirror
[19] o Microsoft Azure PlayFab [20] ofrecen entornos accesibles que facilitan el desarrollo
y el despliegue de prototipos colaborativos con este mismo esquema de solución.

No obstante, las soluciones centralizadas suelen presentar algunas limitaciones signifi-
cativas: concentran el tráfico en un único dispositivo, disponen de una escalabilidad limi-
tada, incrementan los tiempos de respuesta conforme crece el número de usuarios y son
vulnerables a sufrir puntos únicos de falla, como la interrupción total del sistema ante
la desconexión del nodo maestro encargado de la comunicación. Además, si se depende
de soluciones propietarias, se restringe la personalización y apertura tecnológica, condi-
cionando la investigación abierta. Estas condiciones plantean la necesidad de reconsiderar
si dicho enfoque debe seguir siendo el eje principal de la colaboración inmersiva, y abren
la posibilidad de explorar modelos alternativos más rápidos, consistentes y robustos para
entornos XR heterogéneos.

Durante el resto de este trabajo se profundizará en la conceptualización, implementa-
ción y validación de un modelo de comunicación descentralizado, diseñado para responder
a los desafíos identificados en entornos colaborativos de XR. A través de este modelo,
construido bajo la filosofía de código libre, se mostrará una comparativa sólida entre es-
tos dos tipos de arquitecturas de colaboración inmersiva: arquitectura centralizada vs.
arquitectura descentralizada, con la que se permita dar solución a las condiciones ante-
riormente planteadas, asentando las bases de futuras líneas de investigación en interacción
multimodal, coordinación en tiempo real y diseño de sistemas XR colaborativos.
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1.2. Antecedentes históricos de la colaboración XR

Una de las primeras iniciativas documentadas en la literatura sobre inmersión cola-
borativa fue Cave Automatic Virtual Environment (CAVE) [21]. En el sistema CAVE, se
acondicionó un entorno rectangular para proyectar imágenes estereoscópicas directamente
sobre superficies físicas, como los muros y el suelo. Esta configuración permitió generar
una sensación de inmersión sin recurrir a dispositivos de visualización individual como los
visores HMD (Head-Mounted Display), lo que facilitó la interacción simultánea de varios
participantes en el mismo espacio compartido.

Aunque CAVE supuso un hito relevante en la evolución de la colaboración inmersiva en
entornos presenciales, el proyecto Distributed Interactive Virtual Environment (DIVE) [22]
presentó una perspectiva diferente: la colaboración a distancia. En DIVE se desarrolló una
plataforma multiusuario en la cual los participantes podían interactuar virtualmente, acce-
diendo desde estaciones independientes con configuraciones heterogéneas. Esta diferencia
en su arquitectura marcó un punto de inflexión en el desarrollo de las experiencias cola-
borativas en XR, al pasar de experiencias colocalizadas a escenarios remotos que exigían
nuevos mecanismos de sincronización, replicación y coherencia entre entidades virtuales.

Esta transición no fue instantánea, sino que se desarrolló mediante diversas aproxi-
maciones complementarias dentro del continuo de modalidades XR, resumiendo las más
relevantes en la Figura 1.1. Por ejemplo, Macedonia y Zyda [23] implementaron NPSNET-
IV, un mundo virtual con elementos tridimensionales que incorporó el protocolo IEEE 1278
DIS [24] junto con la difusión mediante multicast IP, tecnologías adoptadas en contextos de
entrenamiento militar. En cambio, Greenhalgh y Benford [25] propusieron MASSIVE, un
esquema de consistencia espacial, orientado a procesar los componentes gráficos en función
de su proximidad dentro del espacio digital.

Figura 1.1: Línea del tiempo con los hitos más relevantes en la evolución de las experiencias
XR colaborativas a lo largo de los últimos treinta años.

A comienzos de los años 2000, el campo de la RA dio lugar a estudios relevantes como
AR2Hockey, por Ohshima et al. [26], que evidenciaron la posible sincronización entre ele-
mentos virtuales y objetos reales. En paralelo, ARToolkit contribuyó al desarrollo de apli-
caciones colaborativas mediante técnicas de mapeo visual distribuido en múltiples disposi-
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tivos [27]. En cambio, Distributed Wearable Augmented Reality Framework (DWARF)[28],
presentado por Bauer et al. , introdujo una estructura más formalizada, proponiendo una
arquitectura portátil compuesta por módulos remotos. Así mismo, el sistema de estudio
enriquecido Studierstube de Schmalstieg et al. [29], propuso emplear proyección y visua-
lización tridimensional para el análisis colocalizado bajo una configuración heterogénea,
propuesta que adelantó los principios de la interacción ubicua y colaboración local entre
múltiples usuarios.

Pese a que estos aportes sucedieron en un mismo periodo, cada uno adoptó enfoques
particulares que demostraron la viabilidad de la colaboración entre este tipo de entornos.
Plataformas como Vuforia Engine [30], Apple ARKit [31] y Google ARCore [32], tam-
bién impulsaron su adopción al integrar funciones que hoy resultan fundamentales en la
creación de experiencias aumentadas entre las que se destacan el seguimiento espacial, la
persistencia y la sincronización entre usuarios [33, 34]. En años más recientes, plataformas
como Microsoft Mesh [35] y Spatial Systems [36], así como los SDKs (Software Develop-
ment Kits) Meta XR Core [37], Apple RealityKit [38], Mixed Reality Toolkit [39] y Unity
XR [40], han impulsado el diseño de arquitecturas híbridas que combinan computación
en la nube y representación espacial compartida, habilitando modalidades avanzadas de
interacción en ecosistemas XR.

No obstante, aunque la colaboración centralizada se considera el modelo de comuni-
cación por excelencia, aún son escasos los trabajos que exploran sistemas desarrollados
bajo este paradigma. Como antecedente del presente trabajo, se cuenta con una tesis de
licenciatura defendida en 2023 [41], la cual abordó la colaboración aumentada entre dispo-
sitivos móviles. Esta investigación sentó las bases para el desarrollo de SRVS–C (Spatially
Referenced Virtual Synchronization for Collaboration) [42], un primer modelo de colabora-
ción híbrido entre RA y RV, cuya implementación permite examinar con mayor detalle las
limitaciones técnicas que, abordadas en extenso en el Capítulo 3, sustentan la necesidad
de replantear las aproximaciones actuales y explorar nuevos esquemas colaborativos.

1.3. Hipótesis

Gran parte de las soluciones adoptadas en el diseño de ambientes inmersivos comparti-
dos recurren a paradigmas de red centralizados. Aunque una solución centralizada es más
que suficiente en múltiples escenarios, se pone en discusión su adopción como eje central
en la colaboración entre este tipo de entornos. Ante esta marcada tendencia, se plantea
que un paradigma de colaboración descentralizado podría ofrecer mejoras considerables,
manifestadas en un menor tiempo de sincronización, mayor robustez frente a errores, e
incremento en la capacidad de integración en tareas colaborativas sin afectar la percepción
espacial ni el origen de la interacción. De esta manera, para la validación de esta hipótesis,
se establecen los siguientes objetivos que permitan evaluar técnica y conceptualmente el
modelo sugerido.
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1.4. Objetivo general

Diseñar, implementar y someter a evaluación un esquema de comunicación distribuido
y multimodal, orientado a entornos colaborativos que integren dispositivos heterogéneos
en escenarios virtuales y aumentados.

1.4.1. Objetivos específicos

• Diseñar una arquitectura descentralizada que garantice la sincronización precisa de
los estados espaciales entre soluciones basadas en RA y RV.

• Proponer un esquema compacto y multiplataforma para la representación de datos
que facilite la transmisión de ambientes virtuales.

• Someter a validación una arquitectura descentralizada mediante métricas cuantita-
tivas, evaluando parámetros como la latencia, la coherencia del estado compartido y
la percepción de continuidad en la experiencia colaborativa.

1.5. Delimitación y alcance de la investigación

Debido a la naturaleza multidisciplinaria y el grado de complejidad técnica del pre-
sente trabajo, se han definido los siguientes criterios para delimitar el alcance de esta
investigación:

Tecnología: La fase experimental se ha centrado en dispositivos móviles compatibles con
Google ARCore [43] y en unos visores Oculus Rift con un par de controladores de
seis grados de libertad (6DoF). Se excluye el uso de visores de última generación
(HoloLens 2, Meta Quest 3, Apple Vision Pro), así como de sistemas completamen-
te vestibles o de cualquier configuración que dependa de sensores externos de alta
precisión.

Evaluación experimental: Las pruebas se desarrollaron sobre un espacio de escala de
habitación (3× 3 metros), utilizando métricas como el retraso en la sincronización y
el tiempo que tarda la replicación de una operación. No se incluyen un análisis del
consumo de recursos computacionales ni se realizan pruebas con usuarios finales o
condiciones operativas reales.

Paradigma arquitectónico: Se contrastan dos modelos de colaboración: una arquitec-
tura centralizada y una arquitectura descentralizada, ambas desarrolladas mediante
librerías de código libre para asegurar el control completo sobre las implementacio-
nes. Dado que no existen modelos abiertos fieles a los objetivos de esta investigación,
se excluyen comparaciones con soluciones comerciales, plataformas propietarias o
esquemas híbridos que dependan de servidores externos.
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Componentes funcionales: La investigación se enfoca en cuatro módulos clave para la
comparación: (i) sincronización de estados espaciales (posición y orientación), (ii)
gestión de sesiones multiusuario, (iii) intercambio de entradas multimodales (movi-
mientos, gestos, eventos), y (iv) visualización coherente del entorno compartido.

1.6. Organización de la tesis

Con el propósito de presentar de forma lineal los aspectos teóricos, técnicos y experi-
mentales vinculados a esta propuesta de descentralización inmersiva, esta tesis se organiza
en seis capítulos. A continuación, se resume brevemente el contenido que se podrá encon-
trar en cada uno de ellos:

Capítulo 1 – Introducción. Presentó el marco general de la investigación, incluyendo
los antecedentes tecnológicos y conceptuales, la justificación del estudio, la formulación de
la problemática, los objetivos, la hipótesis, las delimitaciones del proyecto y la organización
del documento.

Capítulo 2 – Fundamentos teóricos. Se introducen los conceptos técnicos nece-
sarios para comprender la propuesta, que contempla principios de entornos distribuidos,
sincronización en redes, tolerancia a fallos y modelos de interacción multimodal.

Capítulo 3 – Estado del arte. Expone un análisis crítico de la literatura especia-
lizada sobre arquitecturas colaborativas para sistemas XR. Se examinan las restricciones
que presentan los enfoques centralizados y se identifican los vacíos que dan origen a esta
propuesta.

Capítulo 4 – Implementación. Documenta detalladamente el diseño arquitectónico
del sistema, que incorpora diagramas, estructuras y esquemas de comunicación. Asimismo,
se introduce el proceso de implementación del sistema.

Capítulo 5 – Metodología y resultados. Describe la metodología empleada para
la evaluación de la propuesta. Se detallan las especificaciones técnicas, los instrumentos
empleados, los criterios de evaluación y el protocolo experimental definido. Posteriormente
se presentan las pruebas realizadas y el análisis comparativo de los resultados obtenidos.

Capítulo 6 – Conclusiones y trabajo futuro. Sintetiza los resultados más re-
levantes de la investigación, analizando los aspectos técnicos y conceptuales de ambas
arquitecturas. Posteriormente, se recapitulan los objetivos de este trabajo y se proponen
líneas de investigación y trabajos futuros orientados a la mejora en la colaboración XR.



Capítulo 2

Fundamentos para la descentralización
en entornos XR

En este capítulo se presenta el contenido técnico necesario para comprender los funda-
mentos de la computación distribuida, abordando sus principios operativos, las arquitec-
turas más representativas y diversos modelos de comunicación, replicación, consistencia y
sincronización de estados. El capítulo concluye con una revisión de las principales herra-
mientas utilizadas en la creación de experiencias XR.

2.1. Introducción a la colaboración inmersiva

La evolución de la colaboración inmersiva ha estado marcada por dos enfoques pre-
dominantes: la realidad extendida y el concepto de metaverso. Este último, concebido
inicialmente como una visión futurista de interacción social en entornos virtuales, apareció
por primera vez en la novela Snow Crash de Neal Stephenson [44], una historia distópica
que sucede en un extenso mundo virtual que coexiste con el mundo físico. En 2021, la
empresa Meta retomó esta noción, atrayendo el interés de medios, industrias tecnológicas
y usuarios al materializar un concepto que hasta entonces pertenecía a la ficción [45].

La XR, en cambio, constituye un modelo conceptual orientado al diseño de entornos
interactivos. Representa un conjunto tecnológico amplio que busca integrar de manera
fluida el espacio físico con escenarios completamente virtuales [46]. Su evolución ha estado
marcada por la convergencia de modalidades como la realidad aumentada, que proyecta

7
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elementos digitales sobre el mundo real [47]; la realidad virtual, que introduce al usuario
en escenarios tridimensionales generados por computadora [48]; y la realidad mixta, que
permite la cohabitación e interacción en tiempo real entre objetos físicos y digitales.

Esta interacción se enriquece mediante el uso de interfaces multisensoriales de entrada
y salida que integran sentidos y canales de difusión de manera simultánea [49], buscando
emular los patrones de la comunicación humana [50]. Además de los dispositivos de entrada
clásicos (pantallas táctiles y controladores), se han integrado progresivamente tecnologías
de reconocimiento de comandos por voz y diálogos [51], reconocimiento de gestos faciales,
de manos [52, 53] y corporales para la manipulación directa de objetos [54], seguimiento
ocular que permite deducir la intención del usuario y su punto de interés [55], así como
retroalimentaciones visuales, sonoras, olfativas, gustativas o electro estimulantes (hápticas)
como medios de salida para proporcionar una sensación de tacto y presencia física [56, 57].

Cuando estos principios se extienden a dinámicas grupales, se produce entonces una
colaboración inmersiva multimodal. Pero esta capacidad de crear espacios compartidos
y coherentes no es solo una cuestión de integración de hardware de ultima generación.
Representa un reto técnico de alta complejidad de ingeniería de software que se remite
a la computación distribuida. En consecuencia, analizar sus restricciones, arquitecturas y
soluciones técnicas que permiten la colaboración hace indispensable una familiarización
con sus principios operacionales.

2.2. Principios de la computación distribuida

Se entiende por sistema distribuido un conjunto de computadoras autónomas que
cooperan entre sí para ofrecer una experiencia unificada y coherente al usuario [58]. El
concepto de “usuario” abarca tanto personas como aplicaciones y dispositivos que acceden
a los servicios del sistema. La clave de este modelo es que la comunicación y la colaboración
entre sus componentes ocurren de forma oculta, de modo que las complejidades técnicas
permanecen invisibles para los usuarios del sistema.

Estos sistemas se construyen con el propósito de ofrecer un acceso eficiente, controlado
y confiable a recursos que se encuentran úbicados físicamente en distintos lugares. Dichos
recursos abarcan desde el almacenamiento, capacidad de cómputo, bases de datos, hasta
elementos como impresoras, servicios multimedia o redes de comunicación. Su distribu-
ción no solo optimiza el uso de los recursos y reduce costos operativos, sino que también
fomenta la colaboración y la interconexión a gran escala, siendo Internet el ejemplo más
representativo al posibilitar el intercambio de mensajes, archivos, aplicaciones y contenidos
audiovisuales entre millones de usuarios.

Existen dos niveles complementarios que permiten comprender a un sistema distribuido.
El primero es el nivel físico, relacionado con el hardware que contempla la disposición real
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Figura 2.1: Representación de la distribución de un sistema como una capa de middleware.
Imagen adaptada de Tannenmbaum [58].

de los dispositivos (servidores, estaciones de trabajo, sensores) y la infraestructura de
comunicación que los interconecta. El segundo es el nivel lógico, asociado al software, que
constituye el enfoque principal de este trabajo. En este nivel se abstraen los detalles físicos
para definir cómo los componentes se comunican, cooperan y se integran para cumplir los
objetivos del sistema, lo cual se materializa mediante arquitecturas de software y reglas de
interacción bien establecidas entre los usuarios.

Una característica esencial de los sistemas distribuidos es su autonomía: permite ac-
tualizar, reemplazar o reconfigurar partes del sistema sin interrumpir su operación global.
Si se visualiza a un sistema distribuido como un sistema compuesto por distintas capas,
donde la capa inferior corresponde al sistema operativo y la capa superior a las aplicacio-
nes, tal y como se ilustra en la Figura 2.1, podría introducirse una capa intermedia entre
ambas para gestionar la comunicación entre las aplicaciones y el sistema operativo. Esta
capa intermedia de distribución, también conocida como middleware, idealmente debería
cumplir con tres propiedades fundamentales:

1. Transparencia: Oculta la complejidad del sistema al usuario.

2. Apertura: Garantiza la interoperabilidad mediante estándares.

3. Extensibilidad: Permite la integración de nuevos componentes sin comprometer la
operación general.

No obstante, diseñar este tipo de sistemas no se reduce únicamente a conectar compo-
nentes autónomos bajo una lógica común. En la práctica, se enfrentan retos relacionados
con la sincronización de procesos, la consistencia de los datos, la robustez y la seguridad.
A continuación, se analizan las arquitecturas y modelos más representativos que permiten
materializar dichos principios.
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2.3. Arquitecturas distribuidas

Una arquitectura representa el esquema estructural sobre el cual se construye un sis-
tema, definiendo sus componentes, mecanismos y reglas de comunicación e interacción
[59]. En un sistema distribuido, esta organización se divide en tres variantes principales:
centralizada, descentralizada e híbrida.

2.3.1. Arquitectura centralizada

En una arquitectura centralizada, la coordinación y el intercambio de recursos se rea-
lizan mediante un dispositivo o nodo principal, comúnmente denominado servidor. Los
demás nodos, denominados clientes, realizan peticiones a este servidor para comunicarse
con el resto de los dispositivos, siendo el modelo cliente-servidor el ejemplo más represen-
tativo.

En este modelo, la interacción sigue el patrón petición-respuesta: el cliente envía un
requerimiento con los datos necesarios, posteriormente el nodo servidor procesa y devuelve
una respuesta. Su adopción se debe a su simplicidad, centralizar la lógica de comunica-
ción permite controlar, administrar y asegurar la coherencia de los datos desde un único
dispositivo.

2.3.2. Arquitectura descentralizada

En cambio, una arquitectura descentralizada distribuye tanto los recursos como las
responsabilidades de coordinación entre los demás dispositivos. En esta arquitectura, los
nodos actúan simultáneamente como emisores y receptores, compartiendo recursos y co-
laborando de manera directa sin necesidad de un dispositivo principal. Esta descentra-
lización, sin embargo, introduce una mayor complejidad en la lógica de sincronización,
especialmente en operaciones que requieren coherencia espacial, replicación simultánea o
resolución de conflictos en tiempo real. Las redes peer-to-peer (P2P) son el ejemplo más
representativo de este esquema.

Esta arquitectura ofrece una mayor robustez ante errores, ya que el sistema no se ve
comprometido por la caída, el corte o la suspensión de un nodo. Así mismo, facilita la es-
calabilidad, pues los recursos disponibles crecen al incorporar nuevos nodos. Aplicaciones
de comunicación descentralizada como Skype en sus primeras versiones [60], o infraestruc-
turas más recientes como la blockchain [61] usan una implementación directa de este tipo
de arquitecturas.
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2.3.3. Arquitectura híbrida

Las arquitecturas híbridas integran características de los modelos centralizados y des-
centralizados, con el fin de aprovechar sus ventajas y cubrir sus limitaciones. En las arqui-
tecturas híbridas, ciertos nodos coordinan tareas específicas, mientras que otros operan de
forma autónoma y colaborativa. Esta arquitectura resulta especialmente útil en entornos
dinámicos o heterogéneos, donde los nodos cuentan con capacidades y recursos dispares con
distintos objetivos y tareas, siempre y cuando su implementación separe los mecanismos
centralizados y descentralizados.

2.4. Protocolos de comunicación

Independientemente de la arquitectura lógica empleada en un sistema distribuido, los
entornos XR colaborativos enfrentan uno de sus desafíos más exigentes: la coherencia
espacial. Crear la ilusión de un espacio compartido y coherente se reduce a la capacidad
de una arquitectura de red para sincronizar el estado del mundo virtual entre múltiples
participantes con el menor retraso posible en la actualización de este.

En el núcleo de toda comunicación en Internet, y por extensión en aplicaciones XR
colaborativas que dependen de redes IP (Internet Protocol), se encuentra la familia de
protocolos TCP/IP (Transmission Control Protocol/Internet Protocol)[62]. Este modelo
estandarizado organiza la comunicación en cinco capas que, trabajando de manera concer-
tada como se visualiza en la Figura 2.2, permiten el transporte de datos desde la aplicación
hasta el medio físico y viceversa.

Figura 2.2: Representación de la distribución en capas del protocolo TCP/IP. Imagen
adaptada de Glazer [62].

2.4.1. Envío de mensajes a través del protocolo TCP/IP

El proceso de transmisión de datos a través de la familia de protocolos de comunicación
TCP/IP puede entenderse como la construcción progresiva de un mensaje que atraviesa
cada capa de este modelo de arquitectura de red. Cada nivel añade información especí-
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fica para su correcta entrega [63]. Cuando una aplicación necesita enviar datos, inicia el
siguiente proceso de encapsulamiento.

En la capa de aplicación, los datos generados se estructuran según el formato deseado
por la aplicación destino. Estos datos pueden incluir información como el tipo de mensaje,
tiempo de generación, identificadores, propiedades, así como cualquier otro dato de interés,
conformando el segmento de aplicación.

Este primer segmento pasa a la capa de transporte, donde según el protocolo de trans-
porte elegido, típicamente TCP (Transmission Control Protocol) o UDP (User Datagram
Protocol), se encapsula con una cabecera adicional. En el caso de UDP, la cabecera aña-
de el puerto de origen y de destino, la longitud del mensaje y la validación del mensaje
(checksum). Mientras que, de usarse TCP, se añadirían además números de secuencia y
acuses de recibo, formando con ello el segmento de transporte.

El segmento de transporte llega a la capa de red, cuyo elemento fundamental es la
dirección IP, un identificador numérico único que distingue cada dispositivo conectado a la
red. La asignación de una dirección IP puede ser estática (configurada manualmente para
dispositivos críticos como servidores) o dinámica, que asigna y cambia automáticamente
direcciones disponibles a los dispositivos que se conectan. En esta misma capa, se encapsula
una cabecera IP que contiene las direcciones IP de origen, de destino, el protocolo de
transporte utilizado, mecanismos para prevenir bucles infinitos y otros campos de control.
Esta nueva encapsulación forma el paquete IP, que ahora puede ser compartido a través
de múltiples redes intermediarias.

En la capa de enlace de datos, el paquete IP se encapsula dentro de una trama específica
del medio físico (Ethernet, Wi-Fi, etc). Se añaden las direcciones MAC (Media Access
Control) del dispositivo origen, información de control de acceso al medio y una secuencia
de verificación de la trama de datos para la detección de errores, formando la trama de
enlace.

Finalmente, en la capa física, la trama de enlace, que integra todas las demás tramas
de información realizadas hasta el momento, se convierte en señales eléctricas, electro-
magnéticas u ópticas según el medio de transmisión (cable coaxial, fibra óptica, ondas de
radio), listas para ser transmitidas a través del medio físico. Aunque comúnmente las capas
más relevantes que se manipulan son las de transporte (responsable de la comunicación de
extremo a extremo) y la capa de aplicación (donde residen los protocolos específicos de la
colaboración), la comprensión integral de toda la familia de protocolos de comunicación
TCP/IP resulta ser clave para trabajos de optimización y rendimiento.
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2.4.2. El dilema del transporte: TCP frente a UDP

La elección del protocolo de transporte define el estándar de comunicación que se usará
entre los componentes de un sistema [64]. TCP es un protocolo orientado a la conexión que
garantiza la entrega ordenada y sin errores de todos los paquetes. Esto se consigue mediante
acuses de recibo y retransmisiones automáticas en caso de pérdidas. Esta confidencialidad
lo hace ideal para datos de control y estado críticos que deben llegar intactos, como la
lógica de aplicación, la creación o destrucción de objetos o la sincronización de un estado
persistente. Sin embargo, sus mecanismos de control y retransmisión introducen retrasos
variables que son considerables para la sincronización en tiempo real.

UDP, en cambio, envía paquetes (llamados datagramas) sin garantía de entrega, orden
o integridad. Esta falta de sobrecarga lo hace más rápido y con retardos significativamente
bajos, lo que lo hace adecuado para la transmisión continua de datos sensibles al tiem-
po, como operaciones de seguimiento, transmisiones de voz o actualización de avatares.
Es decir, cualquier dato obsoleto que resulte menos valioso que un nuevo dato actual,
es preferible descartar su perdida y esperar la siguiente actualización que esperar su re-
transmisión. Dadas estas diferencias, es habitual que las arquitecturas modernas empleen
distintos protocolos y adopten enfoques híbridos.

Tabla 2.1 Dominios de comunicación en sockets Berkeley

Dominio Descripción

AF_INET Comunicación sobre IPv4, utilizada en arquitecturas cliente-servidor convencio-
nales.

AF_INET6 Comunicación sobre IPv6, adecuada para entornos modernos con direcciona-
miento extendido.

AF_UNIX Comunicación local entre procesos mediante archivos de socket, útil para prue-
bas.

AF_PACKET Acceso directo a nivel de enlace (Ethernet).

AF_NETLINK Canal de comunicación entre el kernel y el espacio de usuario, utilizado en con-
figuraciones avanzadas sobre Linux.

AF_CAN Redes de área de controlador, común en aplicaciones automotrices.

AF_BLUETOOTH Comunicación inalámbrica entre dispositivos Bluetooth.

AF_VSOCK Comunicación entre máquinas virtuales, empleada en entornos virtualizados o
contenedores.

AF_TIPC Comunicación distribuida en sistemas de alta disponibilidad.
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2.4.3. Sockets Berkeley: Interfaz de programación para comuni-

cación en red

La interacción entre estas capas del protocolo de comunicación TCP/IP se realiza
programáticamente a través de interfaces conocidas como sockets Berkeley [65], un estándar
que proporciona una abstracción unificada para la comunicación entre procesos, ya sea
localmente o a través de la red. Desarrollado originalmente en la Universidad de California,
Berkeley, como parte de los sistemas BSD UNIX, este modelo se ha convertido en la base
de la programación de redes en la mayoría de los sistemas operativos modernos.

Un socket se conceptualiza como un punto final abstracto para el envío y la recepción
de datos, funcionando como un canal bidireccional de comunicación entre dos usuarios.
Desde la perspectiva de un programador, un socket se comporta de manera similar a un
descriptor de archivo, permitiendo operaciones de lectura y escritura mediante llamadas al
sistema estándar. Cada socket se caracteriza por tres atributos fundamentales: el dominio
de la comunicación (también llamado familia de direcciones, pudiendo ser alguna de las
listadas en la Tabla 2.1), el tipo de socket (que define el modelo de comunicación TCP o
UDP), y el protocolo específico a utilizar (ver Tabla 2.2).

Tabla 2.2 Tipos de socket y protocolos específicos en entornos XR

Tipo de socket Descripción Protocolos comunes

SOCK_STREAM Orientado a la conexión. Proporciona
un flujo continuo y confiable de da-
tos. Ideal para sincronización precisa
y estados persistentes.

TCP (Transmission Control Protocol)

SOCK_DGRAM Sin conexión. Envía datagramas in-
dependientes sin garantía de entrega
ni orden. Útil para datos sensibles al
tiempo.

UDP (User Datagram Protocol)

SOCK_RAW Permite acceso directo a protoco-
los de red subyacentes. Usado para
diagnóstico o implementación perso-
nalizada de protocolos.

IP, ICMP, protocolos definidos por el
usuario

SOCK_SEQPACKET Similar a SOCK_STREAM, pero preser-
va los límites de los mensajes. Menos
común en XR.

SCTP (Stream Control Transmission
Protocol)

SOCK_RDM Proporciona mensajes confiables sin
conexión. Poco implementado en sis-
temas modernos.

Protocolos experimentales o propie-
tarios
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Existen dos tipos de sockets ampliamente utilizados: sockets TCP y sockets UDP. Los
sockets TCP (tipo SOCK_STREAM) proporcionan un flujo de datos continuo y confiable,
garantizando la entrega ordenada de los paquetes mediante retransmisiones automáticas.
Este modelo es análogo a una llamada telefónica: una vez establecida la conexión, los datos
fluyen secuencialmente hasta que alguna de las partes cierra la comunicación. En cambio,
los sockets UDP (tipo SOCK_DGRAM) operan mediante datagramas independientes, donde
cada mensaje constituye una unidad de información autónoma sin garantías de entrega u
orden. Esta aproximación se asemeja al servicio postal, donde cada carta viaja de forma
independiente y puede perderse o llegar en desorden.

2.5. Serialización y formatos de mensajes

En la Sección 2.4.1 se mencionó que la capa de aplicación se encarga de formatear los
datos a transmitir según un esquema común entre los dispositivos involucrados. Este proce-
so de convertir una estructura de datos, desde su formato presente en la memoria aleatoria,
en una secuencia lineal de bits, recibe el nombre de serialización y es independiente del
equipo que lo genera [66]. Los objetos serializados pueden ser almacenados, transmitidos
y reconstruidos según sea necesario empleando su proceso inverso, la deserialización.

Existen dos enfoques predominantes en este proceso: la serialización binaria y la se-
rialización en texto. En el primer enfoque los objetos se convierten en una secuencia de
bytes, esto los hace eficientes en términos de espacio y velocidad. Algunos de estos ejemplos
de serialización son: MessagePack que usa códigos de “tipo” y “longitud” para represen-
tar datos más rápido y más pequeños que JSON. Protocol Buffers que requiere compilar
previamente esquemas de tipo “proto” donde se define la estructura de datos que se desea
serializar. FlatBuffers que también requiere compilar previamente esquemas de tipo “fbs”,
pero que no requieren un proceso de deserialización. Apache Avro que emplea esquemas
en formato JSON para especificar la estructura de datos a serializar, pero sin necesidad de
compilarla previamente al incluir dicho esquema de interpretación dentro de la secuencia
de bytes.

En cambio, la serialización en texto representa los datos en formatos legibles por hu-
manos, lo que facilita la inspección y edición manual. Aunque suelen ser menos eficientes
en términos de tamaño y velocidad, son ampliamente adoptados en aplicaciones web y
servicios interoperables. Los formatos más comunes son: XML (lenguaje de marcado ex-
tensible) un lenguaje de marcado similar a HTML pero sin etiquetas integradas. JSON
un formato de serialización de datos ampliamente extendido entre plataformas y lenguajes
para intercambiar estructuras del tipo “campo:valor” entre aplicaciones y servicios. YAML
un formato enfocado en la legibilidad humana que utiliza una sintaxis basada en la inden-
tación para representar datos estructurados como listas, mapas o valores escalares, siendo
especialmente útil en archivos de configuración.
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El proceso de la serialización facilita hacer llamadas a otros procedimientos locales o
remotos, identificar cambios de datos en ejecución, crear copias de información, añadir per-
sistencia a los datos o intercambiar objetos entre distintos programas. Sin embargo, su uso
también acarrea inconvenientes, por ejemplo, rompe la opacidad de los datos abstractos al
exponer atributos públicos y privados. Produce retrasos en la transmisión y deserialización
si no se garantiza una serialización de objetos optimizada y en caso de serializar objetos
que tienen valores que apuntan a direcciones en memoria, al deserializar esta dirección no
necesariamente será la deseada.

Aunque existen soluciones particulares que resuelven algunos de estos problemas como
la encriptación, compresión u operaciones de referencias lógicas a apuntadores de memoria
física (pointer swizzling, lazy swizzling, partial swizzling), el consumo adicional de recursos
para implementar alguno de estos procesos puede degradar la experiencia que hace uso
de la solución. Por esta razón, ante estructuras mas complejas, se recomienda serializar
individualmente por campos y almacenarlos en un buffer previo a su envío, o bien, construir
paquetes de información.

2.6. Replicación y consistencia de datos

La replicación de estados se define como el proceso mediante el cuál se mantienen copias
sincronizadas del estado del mundo virtual a través de múltiples usuarios. Esta consistencia
puede conseguirse bajo un enfoque de consistencia fuerte y eventual. En la consistencia
fuerte se garantiza que los estados se vean reflejados en el mismo instante temporal en el
que se realiza una actualización. En cambio, en un esquema de consistencia eventual se
permite que las réplicas diverjan temporalmente [67].

Un esquema típico de solución suele establecer un dispositivo en la red como la “fuen-
te de la verdad”, donde se alberga el estado global del mundo. Cada usuario adicional
mantiene una réplica local que se actualiza continuamente. Sin embargo, en un sistema
completamente descentralizado, el problema incrementa su complejidad a gran escala cuan-
do se busca que esa sincronización sea convergente, instantánea y robusta entre todos los
usuarios.

2.6.1. Mecanismos de control y unicidad

La mayoría de los algoritmos de consenso descritos en la literatura suelen requerir
un control respecto a cada nodo involucrado en el sistema. Esta supervisión refuerza la
integridad y el carácter único de la información compartida, mediante tres mecanismos
comúnmente empleados en este tipo de procesos: marcas de tiempo (timestamp), identifi-
cadores UUID y funciones criptográficas aplicadas a los datos [68].
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Una marca de tiempo, entendida como una referencia cronológica representada median-
te fecha y hora, permite establecer la secuencia de eventos ocurridos dentro de un proceso,
resolviendo ambigüedades sobre la prioridad y el orden de ejecución. Por su parte, los
UUIDs (Universally Unique Identifiers) son identificadores generados mediante algorit-
mos diseñados para minimizar la probabilidad de colisión, lo que permite referenciar de
forma inequívoca las entidades distribuidas en la arquitectura.

La operación de hashing, también conocida como función hash, implica crear una huella
digital de la información con una extensión predefinida, utilizada para detectar cambios e
inconsistencias entre paquetes transmitidos. Al aplicar funciones hash sobre el estado de los
paquetes, el sistema es capaz de identificar divergencias entre réplicas locales y el estado
canónico, permitiendo únicamente aquellas modificaciones que hayan sido sincronizadas
durante todo el proceso de la comunicación.

2.7. Desafíos técnicos en la colaboración XR distribuida

En aplicaciones tradicionales, un retardo de varios cientos de milisegundos puede resul-
tar aceptable. Sin embargo, los entornos XR exigen latencias inferiores a los 100 milisegun-
dos para preservar la ilusión de presencia [69]. Esta exigencia se ve agravada por el jitter,
una fluctuación temporal capaz de alterar la fluidez y consistencia de las interacciones
compartidas.

La pérdida de paquetes y la preservación de su integridad añaden una capa técnica adi-
cional que complica la operación del sistema, junto con aspectos vinculados a la privacidad,
la protección de datos y la capacidad de crecimiento del sistema [70].

2.7.1. Entornos de programación XR y sus arquitecturas de co-

nectividad

La integración de los principios abordados representa un reto técnico de alta com-
plejidad. Ante esta situación, los motores contemporáneos de creación de experiencias
interactivas han incorporado niveles de abstracción que encapsulan los desafíos de red y
de sincronización, facilitando que los desarrolladores se enfoquen en la construcción de
entornos inmersivos sin afectar la robustez operativa del sistema [71].

Un ejemplo de ello es Unity Engine [72], una plataforma de desarrollo ampliamente
utilizada para la creación de experiencias multiusuario mediante estructuras jerárquicas
de abstracción. Su sistema nativo de Networking (UNET, actualmente obsoleto) sentó las
bases de la conectividad colaborativa, mientras que soluciones más recientes como Netcode
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for GameObjects (NGO) [18] ofrecen una estructura de programación de alto nivel que
automatiza la replicación de propiedades, la sincronización de escenas y el control de
sesiones multiusuario. Para desarrolladores que requieren arquitecturas personalizadas,
el middleware Photon Engine proporciona una red distribuida alojada remotamente [73],
dotada de herramientas como matchmaking automático y replicación de estado integradas.

Otro ejemplo es Unreal Engine [74], que aborda la conectividad multiusuario mediante
un sistema de replicación embebido de forma nativa en su estructura interna. Mediante el
simple marcado de propiedades o mediante el uso de blueprints visuales, los desarrolladores
pueden indicar qué elementos deben sincronizarse automáticamente a través de la red. El
motor gestiona eficientemente la priorización de actualizaciones basándose en la relevancia
espacial, replicando primero los objetos más cercanos al jugador. Incluso, para casos de uso
empresarial y experiencias a gran escala, Unreal Engine ofrece integración con servicios
como Epic Online Services, que proporciona matchmaking, logros, almacenamiento en la
nube y otras funcionalidades esenciales sin costos de licencia.

En el espacio open-source, Godot Engine [75] ha avanzado significativamente en ca-
pacidades de red con su sistema de High-Level Multiplayer API. Aunque requiere más
configuración manual que sus contrapartes comerciales, Godot Engine ofrece flexibilidad
para implementar arquitecturas personalizadas y sincronización de estados. Su naturaleza
abierta permite adaptaciones específicas para requisitos XR, como la optimización para
latencia ultrabaja o integración con protocolos especializados.

Si bien estas plataformas constituyen la base tecnológica sobre la cual se construyen
experiencias XR colaborativas, su verdadero potencial se revela al analizar implementa-
ciones específicas que han logrado resolver los desafíos de sincronización, escalabilidad y
coherencia en entornos distribuidos. El siguiente capítulo aborda estos casos, permitiendo
identificar patrones arquitectónicos efectivos y estrategias de diseño replicables.



Capítulo 3

Estado del arte

Este capítulo analiza el estado del arte en torno a los sistemas inmersivos colaborati-
vos, con énfasis en las distintas arquitecturas y modelos de implementación descritos en la
literatura especializada. Posteriormente, se desarrolla un estudio comparativo de las dis-
tintas soluciones e implementaciones existentes, identificando las características técnicas,
los mecanismos de sincronización, así como las fortalezas y limitaciones a las que llegaron
distintos autores.

Distintos autores resaltaron tempranamente la importancia de las arquitecturas dis-
tribuidas para la creación de experiencias compartidas [76, 77]. Algunos de los avances
han sido enfocados en definir marcos puramente conceptuales sobre cómo obtener dicha
colaboración, como Schafer et al. [78] que definieron el entorno, los avatares y la inter-
acción como los tres componentes fundamentales bajo los cuales se debería implementar
la lógica de una experiencia compartida. Mientras que Braud et al. [79] identificaron que
los sistemas operativos y las arquitecturas de software actuales carecen de las caracterís-
ticas necesarias para soportar las demandas específicas de la XR, por lo que propusieron
integrar soporte nativo de hardware, algoritmos de visión computacional y protocolos de
comunicación híbridos como elementos primitivos de un sistema operativo al que llamaron
XROS, todo con la finalidad de simplificar el desarrollo de futuras aplicaciones.

Otros autores han optado por evaluar experimentalmente los sistemas distribuidos como
en el trabajo de Brown et al. [80], quienes presentaron un sistema de distribución de datos
basado en eventos para el Battlefield Augmented Reality System (BARS), una experiencia
en RA diseñada para mejorar la conciencia situacional y coordinación en entornos militares,
abordando desafíos como conectividad de red poco confiable, ancho de banda limitado,
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protocolos de transporte intercambiables y canales de comunicación. Su trabajo se destacó
por ser uno de los primeros en emplear grupos multicast como mecanismo de difusión,
demostrando la flexibilidad para adaptarse a diferentes tipos de usuarios y aplicaciones,
tanto en RA móvil como sistemas de RV.

3.1. Arquitecturas centralizadas

Existen trabajos que han propuesto nuevas arquitecturas de colaboración. Herskovitz
et al. [81] introdujeron capacidades valiosas para el reconocimiento espacial compartido en
aplicaciones de RA. Su diseño fue exclusivamente adaptado para ecosistemas de dispositi-
vos homogéneos.

Simiscuka et al. [82] diseñaron una arquitectura específicamente para abordar los desa-
fíos de sincronización entre dispositivos físicos en el ámbito del Internet de las Cosas (IoT)
y entornos virtuales habilitados por la nube. Guo et al. [83] desarrollaron Blocks, una apli-
cación móvil inspirada en la herramienta Google Docs, que permite crear estructuras de
RA que persisten en el ambiente físico, contrastando colaboración colocalizada y remota.
Por su parte, los trabajos que sugieren nuevos marcos de colaboración, como el de Pereira
et al. [84] y el de Kostov y Wolfartsberger [85], siguieron un enfoque cliente-servidor. En
su defecto, optaron por el uso de frameworks y tecnologías como Photon Engine, SPARQL
y Netcode for Gameobject [86].

Las nuevas tendencias se han dirigido hacia los entornos híbridos cloud-edge [87] o
sistemas totalmente basados en la nube [88], que ofrecen capacidades de procesamiento y
almacenamiento escalables. Pero cuyo rendimiento depende de conexiones a Internet de
gran ancho de banda, un requisito poco práctico en escenarios colaborativos locales con
infraestructuras limitadas. Una variante interesante la realizaron Viola et al. [89], quie-
nes desarrollaron VR2Gather, un sistema de telepresencia que habilitó una comunicación
multiusuario en tiempo real mediante la transmisión de contenido volumétrico fotorealis-
ta, superando las limitaciones de enviar avatares (uno de los paquetes más complejos de
información). O como el trabajo de Han et al. [90], quienes propusieron CoMIC (Colla-
borative Mobile Inmersive Computing), una infraestructura para aplicaciones inmersivas
geodistribuidas, cuyo aporte incluyó el uso de redes 5G, renderizado remoto de contenido,
mapeo espacial compartido y mecanismos de seguridad y privacidad.

El avance tecnológico también ha favorecido la heterogeneidad de las experiencias. Los
estudios conceptuales de Numan y Steed [13], junto con Sereno et al. [91], articularon
cómo las asimetrías tecnológicas se manifiestan bajo dos tipos distintos de colaboración:
asimetría perceptiva, donde variaciones en la representación sensorial genera experiencias
divergentes, y asimetría interactiva, que surge de disparidades de control e interacción.
Brehault et al. [92] operacionalizan este marco descomponiendo las asimetrías en ocho
dimensiones medibles, proporcionando una matriz de evaluación que conecta desajustes
tecnológicos con sus respectivas implicaciones colaborativas.
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Sin embargo, contrario a la suposición de que las configuraciones asimétricas podrían ser
perjudiciales en una experiencia colaborativa, es decir, que experiencias con el mismo tipo
de tecnologías y dispositivos presentan mejores resultados en una experiencia compartida,
Grandi et al. [93] aportaron evidencia empírica donde demuestran que la interacción asimé-
trica (heterogénea) entre RA y RV puede ser tan efectiva como configuraciones simétricas
(homogénea) del tipo RA–RA o RV–RV. En [10] también mostraron que configuraciones
asimétricas entre computadoras personales (PC) y RV incluso superaron configuraciones
simétricas en experiencia de usuario y rendimiento de tareas. Agnes et al. [94] encontraron
que mientras las configuraciones simétricas entre RV–RV generan más ideas (favorecen la
creatividad), las asimétricas como emparejamientos PC–RV conducen a la delegación de
tareas y comunicación más eficiente. Estos resultados han abierto nuevas oportunidades
para la creación de marcos de desarrollo multiplataforma, tal como la propuesta de Huang
et al. [95] quienes presentaron SCAXR, una arquitectura diseñada para realizar renderi-
zado bajo demanda aprovechando la heterogeneidad computacional entre los dispositivos
involucrados.

3.2. Soluciones descentralizadas

Investigaciones recientes también han explorado arquitecturas descentralizadas para
XR. Frey et al. [96] presentaron Solipsis, una de las primeras arquitecturas completamente
descentralizadas para entornos virtuales masivos, que fue diseñada para superar los lími-
tes de escalabilidad de los sistemas centralizados tradicionales. Una propuesta basada en
tecnologías de Web descentralizada (DWeb) la realizó Huh et al. [97], quienes utilizaron la
base de datos descentralizada GunDB para sincronizar estados entre pares y un enfoque
“offline-first”, que permite a usuarios colaborar sin conexión estable. Bajo el mismo para-
digma WebXR, en [98] se desarrolló una arquitectura XR descentralizada para entornos de
aprendizaje colaborativo basada en el concepto de tiempo virtual, transformando el mode-
lo Croquet, un modelo de computación basado en eventos sincronizados entre pares [99],
en una aplicación P2P llamada Luminary que permitió una sincronización sin servidores
intermediarios.

Norman et al. [100] propusieron una técnica interesante en la que se combinan dispo-
sitivos de RA y RV para crear un espacio colaborativo híbrido, donde cada participante
puede ver y manipular objetos virtuales desde su propia perspectiva mediante una in-
teracción entre usuarios locales y remotos. Pereira et al. [101] presentaron ARENA, una
arquitectura XR distribuida basada en cloud–edge que facilita el desarrollo de aplicacio-
nes colaborativas multiusuario sobre navegadores Web, empleando un modelo de escena
publicador–subscriptor sincronizado. En estas arquitecturas, los dispositivos actúan co-
mo emisores y receptores, demostrando ser viable en la sincronización de interacciones
heterogéneas, una propuesta que se consiguió de manera masiva con Decentraland [102],
un primer mundo virtual completamente descentralizado que emergió sobre la tecnología
blockchain, gobernado por su comunidad mediante una Organización Autónoma Descen-
tralizada (DAO), ofreciendo un ecosistema donde usuarios poseen, crean y controlan sus
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activos y experiencias digitales.

Con el crecimiento y popularidad del blockchain, los intentos por explorar oportuni-
dades de incursión con el metaverso se vieron reflejados. Ghosh et al. [103], al igual que
Jagatheesaperumal et al. [104], examinaron detalladamente la relación entre blockchain,
la tecnología Web 3.0 y la descentralización del metaverso, coincidiendo en que un en-
foque centralizado limitaría el control del usuario, expondría riesgos en la protección de
datos y dificultaría la interoperabilidad entre plataformas. Con el propósito de revertir esta
tendencia a centralizar las experiencias XR, Huabing et al. [105] presentaron CRCDnet,
una red descentralizada para visualización distribuida sincrónica en escenarios móviles de
RA, construida sobre infraestructura Web y empleando blockchain como mecanismo de
indexación para facilitar el intercambio seguro de contenido gráfico procesado y habilitar
comunicación directa entre dispositivos (D2D, Device–to–Device). Asimismo, en una apli-
cación orientada al ámbito médico, Shreyansh et al. [106] propusieron una arquitectura
XR descentralizada para visualización colaborativa de datos tridimensionales, integran-
do un sistema criptográfico biométrico híbrido, blockchain y almacenamiento distribuido
para preservar la confidencialidad de los datos y asegurar la conformidad con estándares
regulatorios.

Finalmente, Bhattacharya et al. [107] sostienen que la evolución de los sistemas inmer-
sivos basados en realidad aumentada y virtual estará marcada por una transición hacia
modelos descentralizados. Estos, impulsados por la convergencia de redes 6G y blockchain,
anticipan un ecosistema interoperable donde múltiples plataformas compartan activos,
identidades y experiencias sin estar supervisadas por una infraestructura centralizada.

3.3. Vacíos conceptuales identificados en la literatura

La revisión crítica de los trabajos existentes muestra un panorama fragmentado en la
evolución de esquemas de colaboración inmersiva en XR. Aunque se observa una tendencia
creciente hacia el diseño de experiencias compartidas, subsiste una separación marcada en-
tre los enfoques centralizados predominantes y las propuestas descentralizadas emergentes.

A pesar de que las arquitecturas centralizadas adoptan ampliamente kits de desarrollo
de software comerciales como Unity Netcode y Photon Engine, así como enfoques híbridos
cloud-edge que cubren las deficiencias en aspectos como la escalabilidad y la conectividad,
no se ha conseguido satisfacer las necesidades de colaboración ubicua, siendo pocos los
trabajos enfocados en la creación de nuevas arquitecturas. Ante esta oportunidad, se ex-
tiende la Tabla 3.1 como un resumen comparativo de las distintas soluciones aportadas a la
literatura por diversos autores, en el que la descentralización comienza a destacar como un
paradigma prometedor. Por ello proponer una nueva arquitectura que combine los mejores
aspectos identificados en cada solución podría marcar los antecedentes de nuevos aportes
dentro del campo de la colaboración XR.
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Tabla 3.1 Resumen comparativo de artículos sobre colaboración XR

Referencia Arquitectura Modalidad Dispositivos Interacción

[22] Carlsson 1993 P2P RV PC, HMD Teclado, ratón

[23] Zyda 1994 Distribuida RV PC, HMD Teclado, ratón

[26] Ohshima 1998 Distribuida RA HMD Panel interactivo

[29] Dieter 2002 Distribuida RA HMD, PC Panel interactivo

[80] Brown 2004 Distribuida RA, RV HMD, PC Teclado, ratón, HMD

[96] Frey 2008 P2P RV PC, smartphone Teclado, ratón

[108] Baillard 2017 Cliente-servidor RA, RM Tablet, HMD Táctil, gestos

[109] Dey 2017 Cliente-servidor RA, RV HMD Gestos, avatar

[110] Zhang 2018 Cloud-edge RA Smartphone Táctil

[82] Simiscuka 2019 Híbrida RV HMD, PC Táctil, gestos

[83] Anhong 2019 Cliente-servidor RA Smartphone, HMD Táctil, gestos, voz

[84] Pereira 2019 Cliente-servidor RA, RV HMD, smartphone Táctil, gestos

[97] Huh 2019 P2P RA, RV, RM Smartphone, PC,
HMD

Táctil, mouse, gestos

[111] Sandor 2019 Cliente-servidor RA HMD Controladores

[34] Kaewrat 2020 Cliente-servidor RA Smartphone, PC Marcadores, táctil

[112] Zenati 2020 Cliente-servidor RA, RV Smartphones, HMD Táctil, gestual

[88] Mourtzis 2020 Cloud RA Smartphone, HMD Táctil

[113] Zhu 2020 Cliente-servidor RA Tablets Táctil

[101] Pereira 2021 Distribuida RA, RV Smartphone, HMD,
PC

Táctil, gestos, voz

[98] Suslov 2021 P2P RA, RV PC, HMD Teclado, mouse

[33] Manuaba 2021 Cliente-servidor RA Smartphone Táctil

[101] Pereira 2021 Cloud-edge RA, RV, RM HMD, PC,
smartphone

Gestos, táctil

[14] Lee 2021 Cliente-servidor RA, RM HMD, smartphone Gestos, táctil

[13] Numan 2022 Cliente-servidor RA, RV HMD, smartphone Gestos, táctil

[15] Tumler 2022 Cliente-servidor RA, RV, RM HMD, PC Gestos, táctil

[114] Porcino 2022 Cliente-servidor RA, RM HMD, PC,
smartphone

Gestos, táctil

[85] Kostov 2022 Cliente-servidor RA, RV, RM HMD, PC,
smartphone

Controladores, teclado,
táctil

[86] Guo 2023 Cliente-servidor RM HMD Gestos, seguimiento
ocular

[89] Viola 2023 Híbrida RV HMD, smartphone Voz, movimiento físico

[90] Han 2023 Cloud-edge RA, RV, RM HMD, smartphone Voz, gestos, seguimiento
físico y ocular

[115] Huang 2023 Cloud-edge RA, RV HMD, smartphone Gestos, táctil

[95] Huang 2024 Cloud-edge RA, RV, RM HMD Gestos

[116] Neeli 2024 Cloud-edge RA, RM HMD, PC,
smartphone

Gestos, táctil

[105] Zhang 2024 Descentralizada RA Smartphone Táctil

[106] Sharma 2025 Descentralizada RA, RV Smartphone, HMD Táctil, gestos

[102] Decentraland Descentralizada RV PC Mouse, teclado



Capítulo 4

Arquitectura, Interfaces e
Implementación

Este capítulo presenta el diseño sistemático de dos sistemas colaborativos con sus res-
pectivas interfaces de comunicación. Primero se describe cada módulo de la arquitectura
centralizada. Posteriormente, se da espacio para describir el diseño de la arquitectura des-
centralizada. Finalmente, se presenta la interfaz común del sistema con sus respectivas
mecánicas de operación, coherencia espacial y multimodalidad.

4.1. Mecánica general

En esta investigación, se ha adoptado una metodología de experimentación empírica.
La propuesta toma como referencia una aplicación de dibujo espacial colaborativo, una
modalidad interactiva base entre las aplicaciones inmersivas de acuerdo a Close et al.
[117]. Esta aplicación, ilustrada en la Figura 4.1, proporciona la capacidad de generar líneas
virtuales de distintas complejidades geométricas sobre un lienzo espacial compartido, con
el que se evalúan métricas de desempeño como la latencia de transmisión, la replicación
y la calidad percibida por el usuario haciendo uso de dos arquitecturas de comunicación
opuestas: una arquitectura centralizada y una arquitectura descentralizada.
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Figura 4.1: Perspectiva de las dos interfaces de usuario en el escenario de dibujo espacial
colaborativo. (A) ilustra la disposición espacial de ambos participantes, uno utilizando RA
móvil y el otro utilizando RV, junto con sus respectivos trazos virtuales representados en
una escena virtual compartida. (B) muestra la interfaz API–VR, donde los usuarios dibujan
en un espacio 3D utilizando controladores 6DoF portátiles y ajustan las propiedades del
pincel a través de una paleta dentro del mundo virtual. (C) muestra la interfaz API–AR,
donde los usuarios dibujan mediante entradas táctiles en un smartphone compatible con
ARCore y personalizan los trazos utilizando una barra de herramientas superpuesta en
2D.

Para la implementación, se desarrollaron cuatro prototipos. El primer prototipo co-
rresponde a una arquitectura centralizada. En este diseño, todos los trazos dibujados por
los clientes son enviados a un servidor central encargado de retransmitirlos a los demás
participantes. En contraste, el segundo prototipo corresponde a una arquitectura descen-
tralizada, diseñada para distribuir la responsabilidad de la comunicación entre los propios
participantes. Mientras que el tercer y cuarto prototipo corresponden a la aplicación de
dibujo espacial, una orientada a funcionar con RA y la otra con RV respectivamente, que
integran a ambas arquitecturas de red desarrolladas para establecer el núcleo de la colabo-
ración y a efecto de su comparación. A continuación, en las secciones siguientes se detalla
el diseño de cada uno de los prototipos desarrollados.
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4.2. Diseño de la arquitectura centralizada

La arquitectura centralizada, de aquí en adelante referida bajo el acrónimo SRV–C,
fue diseñada como un sistema de bloques interconectados para el manejo simultáneo de
sesiones colaborativas. Su diseño parte de la necesidad de tener el control total respecto
al ciclo de comunicación, pudiendo desplegarse íntegramente en redes locales. Su modelo
operativo, resumido en la Figura 4.2, se compone por cinco bloques principales: (i) el bloque
de conexiones y desconexiones, (ii) la gestión de usuarios, (iii) el bloque de emparejamiento
o matchmaking, (iv) el manejador de serialización y (v) el bloque de difusión (Broadcast).

Figura 4.2: Diagrama de composición de la arquitectura centralizada SRV–C.

El núcleo del sistema, mismo que puede replicarse desde el repositorio público en [118],
se rige por un modelo cliente-servidor. La comunicación se realiza mediante sockets TCP,
implementados sobre una pila tecnológica basada en Node.js, TypeScript y las dependen-
cias descritas en la Tabla 4.1. La información de la sesión colaborativa se almacena en
memoria local empleando una estructura de datos, actualizada bajo demanda, para alma-
cenar el estado individual y el estado compartido de cada cliente conectado. Esto facilita el
acceso inmediato a la información relevante, sin incurrir en operaciones adicionales sobre
bases de datos, mismas que son totalmente opcionales en esta implementación.

4.2.1. Conexiones y desconexiones

El bloque de conexiones y desconexiones gestiona la conexión, desconexión y reconexión
de cada dispositivo integrado en el sistema, asegurando que la colaboración, permanencia
y eventual recuperación se ejecute de manera mecánica.
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Tabla 4.1 Dependencias utilizadas para el desarrollo del servidor con sus respectivos usos

Dependencia Versión Descripción

node 22.15.20 Entorno de ejecución para JavaScript del lado del servidor. Se utiliza como base para eje-
cutar el servidor y manejar procesos en tiempo real.

crypto 10.0.0 Generador de Identificadores Únicos Universales (UUID). Se emplea para crear identifica-
dores únicos en recursos como sesiones, usuarios, o mensajes dentro de la aplicación.

protobufjs 7.5.3 Implementación de Protocol Buffers en JavaScript. Permite la serialización y deserialización
eficiente de mensajes estructurados entre cliente y servidor.

protobufjs-cli 1.1.3 Interfaz para línea de comandos de protobufjs. Facilita la generación de archivos JavaS-
cript y TypeScript de esquemas compatibles de Protocol Buffers.

ts-node 10.8.1 Ejecuta archivos TypeScript directamente en Node.js. Se usa para desarrollo rápido y ejecu-
ción sin compilación previa, empleado para agilizar la evaluación en entornos de pruebas.

typescript 5.8.3 Lenguaje de programación que extiende JavaScript. Aporta robustez al proyecto, facilita el
mantenimiento del código, y previene errores comunes en tiempo de compilación.

En la fase de conexión inicial (cuando un dispositivo establece una conexión TCP con el
sistema), se identifica al dispositivo por medio de una huella digital generada al concatenar
la dirección IP del cliente, una marca de tiempo tomada al momento de la solicitud y su
respectivo socket de referencia. Esta cadena compuesta se somete a una función hash
proporcionada por el módulo crypto de Node.js, cuya salida es un identificador único e
irrepetible, útil para identificar a los distintos clientes.

Por ejemplo, si un cliente accede desde una red doméstica con la dirección IP 2.71.82.81,
el servidor añade a esta dirección una marca de tiempo generada al recibir la petición y
otros elementos del entorno de conexión, obteniendo una cadena de datos con la estructura
“2.71.82.81–1070720251–socketRef”, que es procesada por el algoritmo de hashing para
producir un ID con el formato “48656c6c6f21...”. Los primeros 8 elementos de este hash
son asignados al cliente y se convierte en su identificador persistente a lo largo de esa
sesión, transmitiéndose al cliente como parte del mensaje de bienvenida.

Para supervisar el estado de cada conexión, un mecanismo de latidos (heartbeat) rastrea
la capacidad de respuesta de los usuarios. Con este mecanismo, el servidor espera un
mensaje de latido de cada cliente en intervalos de 60 segundos (heartbeat_interval). Al
recibir cada latido o cualquier otra operación realizada por el cliente, el servidor actualiza
internamente el registro de actividad del cliente, garantizando que el sistema tenga siempre
un estado preciso de la sesión. Si se acumulan tres intervalos consecutivos sin recibir
latidos desde un cliente (missedHeartbeats), el sistema lo marca como ausente y emite
una notificación al resto de los usuarios de la sala, indicándoles la posible desconexión, sin
limitar sus funciones dentro de la sesión. Esta operación no implica la eliminación definitiva
del cliente, sino que abre una ventana para su reconexión. Si dentro de los próximos 320
segundos posteriores a esta notificación no se recibe una actualización por parte del cliente,
el sistema considera que la desconexión es definitiva, eliminando su registro de actividad,
liberando los recursos asociados al cliente y se actualiza la composición de la sala.
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4.2.2. Gestión de usuarios

El módulo de gestión de usuarios constituye el bloque encargado de representar, super-
visar y mantener actualizado el estado de cada cliente conectado en tiempo real, garanti-
zando la coherencia del entorno colaborativo y la integridad de las comunicaciones. Cada
usuario se abstrae mediante una estructura en memoria conforme a la interfaz IPlayer

ilustrada en la Tabla 4.2.

La estructura IPlayer incluye un campo id que almacena el identificador único del
cliente, generado por el servidor a partir de la función hash descrita en la sección 4.2.1. El
campo conexion registra la referencia del socket asociado a la conexión TCP del cliente,
permitiendo intercambiar datos entre el servidor y el cliente sin otros intermediarios. El
atributo roomId almacena el identificador de la sala colaborativa en la que se encuentra
activo el usuario, mientras que el atributo lastSeen y lastActivity registran las marcas
temporales más recientes del último latido recibido y de la última interacción significativa
respectivamente, ambos utilizados para el cálculo de latencia y detección de inactividad.

Tabla 4.2 Atributos y métodos públicos de la interfaz IPlayer

Atributo Descripción

id Identificador único del jugador.

conexion Socket activo que representa la conexión del jugador.

roomId Identificador de la sala en la que se encuentra el jugador.

lastSeen Marca temporal de la última vez que el jugador fue detectado.

isConnected Estado de conexión actual del jugador.

lastActivity Fecha de la última actividad registrada.

heartbeatInterval Intervalo de latidos para verificar la conexión.

missedHeartbeats Número de latidos perdidos consecutivos.

buffer Cadena de datos en espera de procesamiento.

Método Descripción

cleanup() Libera recursos y elimina referencias del jugador.

serializer() Devuelve el manejador de serialización para el jugador.

El campo isConnected actúa como bandera lógica para determinar si una conexión
está activa y operativa, sincronizándose con el atributo missedHeartbeats quien lleva el
conteo acumulado de latidos no recibidos, lo que permite enviar respuestas reactivas a la
pérdida de conexión y activar rutinas de recuperación. Por su parte, el heartbeatInterval
guarda una referencia al temporizador asignado a cada cliente con la finalidad de registrar
la periodicidad de los latidos, mientras que buffer actúa como espacio temporal para la
serialización y deserialización de los datos.

También se definen dos métodos fundamentales como cleanup(), encargado de liberar
los datos asociados a un cliente cuando la conexión se cierra o expira, y serializer(), que
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expone la lógica de serialización específica empleada por el cliente, permitiendo interpretar
adecuadamente los datos entrantes.

4.2.3. Matchmaking

El bloque de emparejamiento o matchmaking define y operacionaliza el concepto de
sala colaborativa como un elemento funcional del sistema. Una sala colaborativa se define
como un espacio lógico acotado donde un grupo específico de usuarios comparte en tiempo
real objetos, eventos y estados sincronizados. El sistema es capaz de gestionar hasta n

salas colaborativas, cada una con una capacidad máxima de m usuarios concurrentes en
espacios lógicos aislados.

Matchmaking gestiona de forma automatizada la asignación de nuevos clientes a salas
colaborativas existentes o, en su defecto, la creación de nuevas salas de ser necesarias.
Esta asignación se rige por un esquema secuencial de registro en memoria FIFO (First-
In, First-Out), donde las referencias de las conexiones se insertan ordenadamente en un
arreglo dinámico que representa a los usuarios de una sala. El primer cliente en ingresar
ocupa la posición 0, y los siguientes clientes se añaden de manera secuencial conforme a su
orden de llegada. Cuando se requiere extraer información de los participantes, el sistema
accede a las posiciones del arreglo conforme fueron insertadas.

El servidor también almacena todas las salas activas, cada una de ellas con su respectivo
identificador y referencias a clientes, que consulta para verificar la disponibilidad de espacio
en alguna de ellas. El criterio principal de emparejamiento se basa en la disponibilidad
de las salas ya creadas: si una sala no ha alcanzado el número máximo m de usuarios
permitido, se vincula al nuevo jugador a dicha sala y se procede a activar los mecanismos
colaborativos correspondientes. En caso contrario, se crea una nueva sala colaborativa
y se coloca al cliente en espera como su primer miembro, manteniendola inactiva hasta
conseguir el número máximo m de usuarios.

El número de usuarios m por sala es un parámetro configurable previo a la inicializa-
ción del servidor. Este parámetro permite modelar escenarios diversos: desde experiencias
uno a uno, hasta dinámicas multijugador. Cada sala colaborativa actúa como una unidad
encapsulada del entorno colaborativo global. Dentro de su lógica se mantienen referencias
explícitas a los dispositivos conectados y a los objetos virtuales generados, como modelos
manipulables, trazos gráficos o registros de interacción.

4.2.4. Manejador de serialización

Este bloque garantiza la comunicación entre clientes heterogéneos. El manejador adop-
ta un mecanismo similar a [80] capaz de alternar dinámicamente entre distintos formatos
de serialización en lugar de la capa de transporte, sin alterar la semántica del entorno



CAPÍTULO 4. IMPLEMENTACIÓN DEL SISTEMA 30

colaborativo. Esta característica se consigue con un diseño basado en interfaces, donde
cada modelo de serialización, como JSON, MessagePack o Protobuf, se encapsula en una
clase común denominada SerializationHandler. La definición de operaciones esenciales
como la codificación y decodificación automatizada se consigue con el uso de los identifica-
dores MIME (Multipurpose Internet Mail Extensions) correspondientes, que son etiquetas
estandarizadas que permiten al servidor reconocer y tratar adecuadamente cada mensaje
entrante o saliente según los primeros caracteres recibidos en su formato.

El sistema, por practicidad, permite que la elección del serializador no sea una confi-
guración global impuesta por el mismo servidor, sino una decisión contextual determinada
por los clientes. Esta decisión puede interpretarse desde el mensaje inicial enviado por
el cliente o establecerse explícitamente como parte del protocolo de conexión. Esta so-
lución garantiza la interoperabilidad entre dispositivos que, por compatibilidad, recursos
o rendimiento computacional, requieren emplear distintos formatos. Por ejemplo, alguna
implementación desarrollada con editores actuales de Unity Engine podrían hacer uso de
Protobuf para aprovechar su bajo costo computacional y capacidad de transmisión más
eficiente [119], mientras que aplicaciones Web o clientes no compatibles pueden continuar
empleando el formato de serialización JSON. La decisión de desacoplar completamente el
formato de serialización del núcleo lógico del servidor fortalece además su capacidad de
evolución futura ante su posible incorporación de nuevos formatos, ya sea por necesidad
técnica, avance tecnológico o integración con plataformas externas.

Tabla 4.3 Atributos y métodos públicos de la clase Room

Atributo Descripción

roomId Identificador único de la sala.

players Lista de usuarios conectados, representados mediante objetos del tipo IPlayer.

objects Estructura que contiene los elementos posicionados en el espacio, definidos por coor-
denadas del tipo Vector3.

drawings Trazos realizados por los participantes, también representados por el tipo de dato
Vector3.

lastActivity Marca temporal de la última actividad registrada en la sala.

Método Descripción

broadcast(data: String) Envía datos a todos los usuarios conectados.

addPlayer(player: IPlayer) Añade un nuevo participante a la sala.

removePlayer() Remueve un usuario identificado previamente de la sala.

playerReconnected() Reestablece el estado de un usuario tras su reconexión.

playerDisconnected() Marca a un participante como desconectado.

isEmpty() Comprueba si no hay usuarios activos en la sala.

getActivePlayers() Devuelve el conjunto de usuarios actualmente conectados.
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4.2.5. Bloque de difusión

El bloque de difusión o broadcasting se encarga de propagar instantáneamente los
mensajes recibidos hacia el resto de los participantes que comparten una misma sesión. Su
función central, broadcast(), permite emitir mensajes a todos los integrantes activos de
una sala determinada, excluyendo al emisor inicial para reducir el tráfico en la red local.

El método broadcast() forma parte de una abstracción lógica denominada Room (ver
Tabla 4.3), una entidad que describe la lógica de cada sesión colaborativa. Al invocar-
se el método de difusión, el sistema transmite a cada usuario asociado a la misma sala
correspondiente la estructura y secuencia presentada en la sección 4.2.3.

La difusión de eventos habilita el núcleo de la experiencia colaborativa: cada acción
significativa, como iniciar un trazo de dibujo, actualizar una posición o señalar una entidad
compartida, es replicada por los demás participantes, reforzando la sensación de interacción
simultánea. Con cada evento de transmisión, la marca de tiempo de actividad de la sala es
actualizada, lo cual alimenta el proceso de detección de inactividad. Si durante un periodo
prolongado no se registran eventos transmitidos ni interacciones entre participantes, el
sistema detecta la inactividad de la sala y también procede a desasignar los recursos
vinculados, optimizando el consumo de memoria y reduciendo la carga del sistema.

4.3. Diseño de la arquitectura descentralizada

La arquitectura descentralizada fue diseñada con el objetivo de facilitar la interacción
punto a punto entre nodos distribuidos, prescindiendo de una infraestructura centralizada.
La solución adoptó un patrón de mensajería pub/sub (publicador/suscriptor) similar al
sistema de Pereira et al. [101], pero implementado sobre la pila tecnológica de NetMQ,
una adaptación completamente nativa en C-Sharp de ZeroMQ [120], donde los emisores
(publicadores) generan mensajes sin requerir conocimiento explícito de los receptores (sus-
criptores).

La comunicación se organiza mediante tópicos (topics), estructurando el flujo de datos
en canales temáticos diferenciados según su función. Cada topic, se asigna a un canal es-
pecífico de comunicación, por ejemplo, un topic para compartir trazos de dibujo y anclajes
espaciales, un segundo topic para compartir posición u orientación de los clientes, o un ter-
cer topic para presentarse ante el resto de nodos, asegurando que todos los nodos suscritos
a esos tópicos reciban las actualizaciones pertinentes en tiempo real. Este enfoque también
permite la incorporación dinámica de nuevos participantes y se elimina el concepto de
sala colaborativa: cualquier nodo que se conecte y se suscriba al tópico correspondiente
comenzará a recibir información sin necesidad de reconfigurar el resto de la red.
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4.3.1. Mecanismo de descubrimiento de nodos

Uno de los desafíos iniciales a los que se enfrenta el diseño de esta arquitectura consiste
en la detección de los dispositivos activos que comparten la misma red. Al eliminar el uso
de un servidor central, cada nodo pierde el acceso a una fuente común de información que,
en las arquitecturas centralizadas tradicionales, facilita la conexión entre los participantes.
En ausencia de este componente intermediario, se requiere un método alternativo que
permita a los dispositivos detectar de forma autónoma a sus pares activos.

Para resolver este problema, se desarrolló el componente MulticastDiscovery, respon-
sable de realizar el descubrimiento de nodos basado en mensajes UDP como mecanismo
equivalente al empleado por Brown et al. [80]. A través de este mecanismo, los nodos de la
red envían anuncios a la dirección de multidifusión 224.0.0.1, una dirección IP reservada
para enviar paquetes de datos a todos los miembros de un grupo, en lugar de su envío a
cada receptor. Este canal funciona como espacio compartido común donde los nodos anun-
cian su presencia en la red. Al iniciar la aplicación, cada nodo transmite periódicamente
un mensaje que incluye su dirección IP, el puerto de servicio y los tópicos donde publica.
La estructura de este mensaje se describe en la Tabla 4.4:

Tabla 4.4 Estructura del mensaje de descubrimiento enviado por cada nodo

Campo Descripción

ip Dirección IP del dispositivo que expone servicios de publicación en la red local.

nodeId Identificador único del nodo, utilizado para rastrear su disponibilidad y validar su reconocimiento por otros
nodos.

topics Lista de tópicos en los que el nodo publica información, correspondiente a su perspectiva del entorno.

4.3.2. Gestión de sockets y conexiones

Para asegurar la consistencia de la red, el módulo MulticastDiscovery implementa
un sistema de control de vida de los nodos. Cada anuncio recibido por UDP actualiza
el registro local de cada dispositivo identificado en la red, posteriormente actualiza una
marca de tiempo asociada al nodo que realiza la transmisión en su propia copia de parti-
cipantes activos. Si un nodo deja de enviar anuncios dentro de un intervalo preestablecido
(60 segundos), se considera inactivo y se elimina de la lista local, lo que desencadena la
desconexión de sus correspondientes suscripciones. Este mecanismo asegura que los dispo-
sitivos no intenten comunicarse con nodos que ya no se encuentran disponibles, reduciendo
así errores y sobre carga a la red innecesaria. El mecanismo contempla los siguientes tres
tipos de desconexiones:
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• Por inactividad: Se gestiona mediante un sistema de tiempo de espera preestablecido.
Si un nodo continúa enviando mensajes dentro del intervalo, se actualiza su marca
de tiempo. En caso contrario, se elimina de la lista de nodos disponibles. Si poste-
riormente se reconecta, sus mensajes de anuncio permiten su reintegración como un
nuevo nodo descubierto.

• Por el usuario: Ocurre cuando el participante decide abandonar la sesión.

• Forzada: Se produce por fallos críticos en la aplicación, como errores lógicos o sobre-
carga de recursos.

Por conveniencia, el sistema define un tópico principal denominado “ARDrawing”, al
cual todos los nodos están programados para suscribirse una vez inician la conexión. Un
segundo módulo identificado como CommunicationManager proporciona métodos para or-
questar la publicación de mensajes en este canal empleando sockets TCP, asegurando que
los paquetes de datos que encapsulan los trazos y anclajes espaciales en estructuras seriali-
zadas lleguen integramente a cada nodo. Cada mensaje incluye el identificador del anclaje,
la secuencia de puntos del trazo, atributos visuales y coordenadas de referencia, como se
empleó en la arquitectura centralizada en la Sección 4.2.4.

4.3.3. Flujo de operación del sistema

El comportamiento de la arquitectura descentralizada se comprende mejor examinando
el ciclo de transmisión de cada mensaje, desde la construcción hasta la replicación en
todos los dispositivos participantes. Este proceso, ejemplificado en la Figura 4.3, se basa
en la interacción coordinada de los tres módulos principales: DrawManager (encargado
de procesar eventos de interacción), CommunicationManager (encargado de orquestar la
transmisión de los datos) y MulticastDiscovery (encargado de validar los nodos activos).

Cuando un usuario realiza un trazo, DrawManager construye y registra la nube de pun-
tos generada por la interacción. Posteriormente, su sistema coordenado es ajustado para
garantizar su persistencia dentro del entorno. Una vez construido el mensaje, se serializa
en conjunto a su geometría, sus atributos visuales y su referencia espacial correspondiente.

El módulo CommunicationManager publica en su propio tópico de dibujo este paquete
serializado mediante su socket de publicación, cuyos nodos ya se encuentran suscritos y
actualizados por el módulo MulticastDiscovery. Este componente gestiona la detección
de los dispositivos activos mediante mensajes periódicos de multidifusión a través de la
dirección estándar 224.0.0.1 y el puerto 2718, configuración establecida para facilitar la
implementación en el entorno de pruebas, con lo que se asegura distribuir la información
únicamente a los participantes presentes en la misma sesión.



CAPÍTULO 4. IMPLEMENTACIÓN DEL SISTEMA 34

Figura 4.3: Diagrama de composición de la arquitectura descentralizada SRV–D.

En el nodo suscriptor, el módulo CommunicationManager opera de forma asíncrona,
procesando los mensajes recibidos a través de un hilo dedicado para su visualización.
ARDrawManager procesa estos mensajes, reconstruyendo el trazo en la escena del nodo
suscriptor. Como resultado, el usuario remoto observa la aparición progresiva del trazo
realizado, permitiendo una colaboración continua entre todos los participantes.

4.4. Diseño del entorno interactivo API–AR

La plataforma API–AR, ilustrada en la subfigura (C) de la Figura 4.1, constituye el
entorno desde el cual se analiza el desempeño de ambas arquitecturas propuestas desde
una perspectiva aumentada. Desarrollada en Unity Engine 2022.3.55f1, motor de aplica-
ciones compatible con Google ARCore, esta integración incluye extensiones que posibilitan
capacidades de realidad aumentada en dispositivos Android. Gracias a ello, múltiples dis-
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positivos móviles certificados por el proveedor [43] pueden participar simultáneamente en
un entorno de anotación espacial, donde se crean y editan objetos gráficos tridimensionales
superpuestos en el mundo físico.

El funcionamiento de API–AR se basa en la captación constante del mundo físico,
apoyándose en el seguimiento espacial, la detección de planos, la estimación de luz y re-
construcción parcial del ambiente mediante cámaras e información inercial. Sobre esta base
sensorial, la aplicación superpone los elementos virtuales en el espacio real, permitiendo
interacciones naturales a través de la pantalla táctil. Su diseño cumple un doble propósito:
por un lado, actúa como medio para la generación de trazos tridimensionales anclados al
entorno, por otro, se establece como una plataforma de evaluación sistemática para ambas
arquitecturas propuestas, permitiendo medir métricas como la latencia de propagación de
los mensajes, la consistencia espacial entre los dispositivos y la robustez frente a fallos o
desconexiones temporales.

4.4.1. Diseño funcional

El diseño funcional de API–AR se organiza en cuatro subsistemas coordinados que
permiten su análisis y extensión por separado:

1. Gestión de entrada gestual: Este módulo interpreta las interacciones realizadas a
través de la pantalla táctil del teléfono móvil. Con el uso del sistema EnhancedTouch

de Unity Engine, se capturan eventos como toques, deslizamientos y arrastres, los
cuales son procesados para generar trazos virtuales sobre el espacio aumentado. La
interpretación de gestos permite reconocer secuencias espaciales y temporales que
definen acciones complejas, como iniciar, continuar o finalizar un dibujo.

2. Subsistema de generación de trazos: Partiendo de las interacciones capturadas
en la entrada gestual, este subsistema crea líneas tridimensionales (ARLines), cada
una con un color, textura y tamaño que son renderizados dinámicamente en la es-
cena de RA. Cada línea se construye con un conjunto finito y espaciado de puntos
espaciales, interpolados conforme su orden de creación, para su visualización como
un elemento continuo e ininterrumpido, incluso si el dispositivo cambia de ubicación
o reinicia su percepción del entorno.

3. Sincronización espacial mediante anclajes: Un anclaje (anchor) en el contexto
de la RA es un punto de interés en el espacio que se emplea como referencia espacial
para posicionar objetos digitales [121]. Para ello, se hace uso de la odometría visual-
inercial de Google ARCore para detectar planos o superficies estables del entorno
y establecer sobre ellos anclajes persistentes. Estos anclajes se replican mediante la
transmisión de sus metadatos asociados, consiguiendo una representación coherente,
incluso si la percepción espacial entre dispositivos difieren ligeramente.
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4. Capa de comunicación y serialización: Este subsistema se encarga de empa-
quetar la información generada (trazos, anclajes, eventos de sesión) en mensajes
estandarizados que son enviadas a través de la red. La aplicación admite múltiples
esquemas de codificación, como JSON, MessagePack y Protobuf, seleccionables di-
námicamente según el escenario de evaluación.

Respecto al diseño visual e interactivo, la interfaz API–AR se organiza en los siguientes
dos componentes complementarios:

• Componente tridimensional: Esta capa constituye el núcleo de la experiencia
aumentada. Es aquí donde se proyectan, en tiempo real, los trazos dibujados, los
anclajes establecidos y las anotaciones compartidas.

• Componente bidimensional de control (UI canvas): Este componente super-
pone elementos gráficos tradicionales como botones, menús, imágenes, y controles
visuales sobre el componente tridimensional. Su propósito es permitir el acceso in-
mediato a las funciones de edición y configuración de los trazos tridimensionales sin
interferir con el entorno aumentado.

4.4.2. Sincronización espacial mediante anclajes persistentes

La persistencia espacial de los objetos virtuales, entendida como la capacidad de los
objetos de mantenerse fijos en posiciones coherentes, se consigue empleando anclas (an-
chors), que son puntos de referencia tridimensionales sobre los cuales se posicionan los
elementos aumentados. Evitando el uso de servicios propietarios como Cloud Anchors de
Google (que requieren acceso a internet, permisos de localización y licencias de uso), se
diseñó un protocolo personalizado de sincronización usando un sistema de coordenadas
relativas.

La estrategia de sincronización implementada parte de la siguiente simplificación: to-
dos los dispositivos inician su sesión colaborativa en una posición física aproximadamente
coincidente, ilustrado en la subfigura (A) de la Figura 4.1. A partir de esta suposición, en
cada dispositivo se define su propio sistema de referenciación espacial, cuyo origen local
se define como (x, y, z) = (0, 0, 0), siendo este el lugar en el entorno real donde se inicia
la aplicación. Si bien esta aproximación presenta limitaciones en entornos muy amplios o
dispersos, resulta suficiente para sesiones controladas con usuarios colocalizados.

Cada anchor identificado tiene asociado una entidad lógica compuesta por:

1. Un identificador único (UUID) generado localmente,
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2. Una posición tridimensional relativa al dispositivo que procesa el anchor,

3. Y una orientación espacial.

Cuando el anchor es creado, sus metadatos se replican en el resto de dispositivos
mediante un mensaje estructurado haciendo uso de alguna de las arquitecturas de red
desarrolladas. Empleando los identificadores persistentes de cada anchor, los clientes re-
construyen los metadatos recibidos desde su marco de referencia local, interpretándolo
como una posición relativa al origen con el que iniciaron su sesión.

Este modelo de sincronización tiene dos ventajas principales. La primera ventaja es
que no se requiere el uso de mapas espaciales compartidos o reconstrucciones simultáneas
del entorno como el de Han et al. [90], lo que simplifica el procesamiento computacional y
reduce el tráfico de datos. La segunda ventaja es que permite una evaluación controlada de
las capacidades en ambas arquitecturas de red. Además, el sistema extiende su alcance y
resuelve otros desafíos como oclusiones temporales, cambios de iluminación o la captura y
procesamiento de datos visuales a través de Google ARCore. Cuando el sistema de percep-
ción del dispositivo pierde momentáneamente el seguimiento espacial, se recurre a anclajes
previamente establecidos por el dispositivo para estimar su transformación espacial con
respecto a su estado anterior.

4.4.3. Generación y transmisión de trazos espaciales

La generación de contenido gráfico se basa en una gramática gestual diseñada específica-
mente para interpretar las interacciones que suceden sobre la pantalla táctil del dispositivo.
Esta gramática permite detectar eventos discretos (como toques iniciales) y movimientos
continuos (arrastres o deslizamientos), los cuales son proyectados como puntos tridimen-
sionales. Cada interacción con la pantalla táctil da lugar a la creación de un ARLine, un
contenedor de líneas tridimensionales sobre el entorno aumentado (ver Figura 4.4). Esta
línea es referenciada al anchor más cercano dentro del entorno físico, consiguiendo así
mantener una posición fija y coherente, incluso si el dispositivo que lo creó se desplaza o
pierde su seguimiento temporal.

Figura 4.4: Proceso de generación de trazos espaciales.
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Durante la interacción, los puntos 2D capturados en pantalla son proyectados 60 centí-
metros sobre el espacio tridimensional mediante un rayo virtual que parte de la cámara de
RA hacia el entorno físico. Los puntos capturados se interpolan linealmente para producir
el efecto visual de un trazo continuo y sus propiedades como el color, grosor y opacidad se
gestionan a través de LineSettings, una estructura configurable a través del componente
bidimensional de control (UI canvas) descrito en la Sección 4.4.1.

Finalizado un trazo (por ejemplo, al levantar el dedo de la pantalla), inicia la operación
de serialización. En esta etapa, los metadatos asociados al trazo se encapsulan bajo la
estructura denominada Drawings, conformada por los siguientes atributos:

• Identificador único del usuario que generó el trazo.

• Identificador de la sala colaborativa en la que se encuentra.

• Identificador del anclaje al que está vinculado el trazo.

• Posición espacial del anclaje en coordenadas relativas al sistema local.

• Lista de puntos que definen la estructura espacial del trazo.

• Propiedades visuales: color y grosor del trazo.

Esta estructura se serializa mediante el esquema JSON, MessagePack o Protobuf. La
elección del formato solo responde a criterios evaluativos.

4.4.4. Recepción, reconstrucción y animación de trazos remotos

Cuando se recibe un mensaje de dibujo generado por otro participante de la sesión
colaborativa, se inicia la operación de reconstrucción local. En este procedimiento se extrae
del mensaje recibido el identificador único del anchor, su posición relativa donde fue creado,
el conjunto de puntos espaciales que componen al trazo, así como sus metadatos visuales.
A continuación, se construye un nuevo anchor con las mismas propiedades compartidas
a través del mensaje, pero para su visualización se ejecuta una animación progresiva que
distribuye el proceso de reconstrucción gráfica a lo largo de varios cuadros de renderizado
(frames), dando la ilusión de ser reconstruido de manera natural y no instantáneamente.

4.5. Diseño del entorno interactivo API–VR

Además de su implementación en dispositivos móviles, el sistema global fue adaptado
para operar en entornos virtuales. Esta versión, denominada API–VR, se diseñó con el
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objetivo de conservar los principios funcionales de la versión en RA. Mientras que la
versión en RA funciona en dispositivos móviles compatibles con ARCore, API–VR está
pensada para plataformas que soportan interfaces XR, como OpenXR u Oculus SDK, por
lo que requiere el uso de equipos con visores y controladores para RV.

Esta aplicación también se realizó empleando Unity Engine 2022.3.55f1, pero utilizando
el sistema XR Interaction Toolkit, una librería de Unity diseñada para facilitar la creación
de entornos interactivos en RV. Este toolkit consigue detectar entradas desde controladores,
manejar colisiones espaciales, definir zonas de interacción y vincular gestos físicos con
acciones programadas.

API–VR también permite visualizar trazos construidos por otros participantes que usan
dispositivos móviles o distintos controladores de RV, pero bajo un ambiente más controlado
respecto a API–AR, ya que se eliminan las condiciones físicas como iluminación, sombras
y oclusiones.

4.5.1. Lógica de interacción

La interacción en RV es radicalmente distinta a la de los dispositivos móviles basados
en pantalla táctil. Contrario a una interacción multitoque (pulsaciones, deslizamientos o
pellizcos), el sistema en RV emplea un par de periféricos con seguimiento espacial, co-
múnmente conocidos como mandos o controladores de RV. Estos controladores permiten
capturar simultáneamente la posición x, y, z, así como la orientación (roll, pitch y yaw),
habilitando una interacción más exacta y precisa sobre los objetos virtuales.

Por ello, la mecánica de interacción fue rediseñada de tal manera que la manipulación
de los objetos virtuales fuese mapeada a través de los botones físicos del controlador. Cada
trazo se inicia al presionar el gatillo o “trigger” del controlador derecho (right controller),
mientras su visualización es representada mediante el componente TrailRenderer, un
componente nativo de Unity Engine con el que se generan estelas o trazos visuales.

TrailRenderer no solo visualiza la trayectoria generada, también almacena interna-
mente los puntos de la trayectoria que se ha seguido mientras el gatillo se mantiene presio-
nado. Una vez se deja de pulsar, se finaliza el trazo y se procede a su envío conforme a la
estructura empleada en API–AR. Es importante destacar que la estela generada se separa
inmediatamente del controlador tras completar el trazo, estableciendo su propia posición
fija en el espacio virtual, de manera equivalente a las anclas generadas en API–AR.
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4.5.2. Lógica de sincronización espacial

API–AR y API–VR comparten un sistema común de coordenadas basado en anclas es-
paciales persistentes. Mientras que en el entorno de RA un ancla se asocia a una posición
física, en RV estos anclajes se definen en un espacio virtual que emula la distribución del
espacio físico. La clave de esta coherencia espacial se consigue a través de una reinterpre-
tación de los anclajes.

Cuando un usuario de la interfaz API–VR procesa la información de un trazo generado
en RA, la geometría del trazo se reconstruye en su ubicación relativa incorporando, además,
una compensación basada en un desfase de altura de aproximadamente 1.15 metros. Este
ajuste minimiza la diferencia entre el origen de ambos espacios coordenados, uno centrado
en la posición inicial de la cámara del dispositivo móvil, y el otro en la posición inicial de
las gafas de RV.

Este desplazamiento permite que un trazo realizado sobre una superficie física se pro-
yecte coherentemente en el espacio virtual, evitando desalineaciones que comprometan la
percepción compartida.



Capítulo 5

Pruebas y resultados

En este capítulo se describe el protocolo de pruebas realizado, los recursos disponibles
para evaluar ambas arquitecturas propuestas y se presentan los resultados obtenidos en el
proceso de evaluación. Finalmente, se concluye con un análisis de rendimiento, así como
los criterios de satisfacción de los objetivos inicialmente propuestos.

5.1. Metodología y validación experimental

API–AR y API–VR no representan únicamente una interfaz de usuario, sino que fungen
el rol de intermediarios para evaluar ambas arquitecturas de red desarrolladas. Ambas
aplicaciones incluyen las herramientas necesarias para dirigir un análisis experimental a
través de dos dimensiones: el rendimiento del sistema (enfocado en comparar la latencia
de la comunicación) y la consistencia colaborativa (enfocada en contrastar la fidelidad
de replicación). Para ello, todas las pruebas realizadas se implementaron en un entorno
interior controlado, con iluminación estable y obstrucciones físicas mínimas, con la finalidad
de garantizar un seguimiento espacial consistente y la reproducibilidad experimental en
escenarios similares.

El conjunto de pruebas se realizó entre dos usuarios: un teléfono inteligente (smartpho-
ne) compatible con ARCore y la aplicación API–AR y un sistema de realidad virtual basa-
do en PC equipado con un controlador de 6 grados de libertad, compatible con la aplicación
API–VR. Ambos dispositivos compartieron un espacio físico de aproximadamente 3×3×3
metros, manteniendo una colocalización espacial durante todo el experimento.

41
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Tabla 5.1 Especificaciones de los dispositivos utilizados en el banco de pruebas

Dispositivo Plataforma Entrada Descripción

Smartphone (Disposi-
tivo A)

Android 11 Pantalla táctil,
seguimiento por cá-
mara

Usuario API–AR ejecutándose en Motorola
One Hyper.

Visores de RV (Dispo-
sitivo B)

Windows 11 Controlador manual de
6DoF

Usuario API–VR ejecutándose en Oculus
Rift y Alienware Aurora R7.

PC macOS 15.5 N/A Instancia del servidor SRV–C en Mac Studio
M2 Max.

Al inicio de cada prueba, los dispositivos se colocaron uno junto al otro en un origen
espacial común, con el dispositivo de RA adyacente al visor de RV. Esto aseguró que ambos
usuarios experimentaran el entorno colaborativo desde un punto de partida equivalente,
facilitando un anclaje espacial consistente y la alineación de anotaciones entre las dos
plataformas.

Figura 5.1: Mapa de distribución espacial
(distancias en metros). La nube de puntos in-
dica un ejemplo de las localizaciones de mues-
treo generadas (sketches) por ambos usua-
rios.

La conectividad de red se estableció me-
diante una LAN usando un router ASUS
RT-AC5300 operando en la banda de 5
GHz, a una tasa de datos de hasta 1734
Mbps de acuerdo con las especificaciones
proporcionadas por el fabricante para la in-
terfaz 802.11ac. El router emitía múltiples
SSIDs, sin embargo, todos los dispositivos
de prueba se conectaron exclusivamente a
un SSID dedicado. No hubo dispositivos
adicionales conectados a la red específica
de pruebas durante las mediciones.

La transmisión de los paquetes se ma-
nejó exclusivamente mediante sockets TCP
persistentes. Para el caso de la arquitectu-
ra centralizada, se requirió una instancia
del servidor SRV–C en una máquina PC
(ver Tabla 5.1), mientras que, para la arqui-
tectura descentralizada, la comunicación se
realizó entre los dispositivos, sin depender
de infraestructuras externas o en la nube.

Los datos espaciales brutos capturados de la entrada del usuario (nube de puntos) se
procesaron utilizando la función Vector3.Lerp de Unity Engine para realizar una inter-
polación lineal entre los datos muestreados en cada evento. Este paso generó un trazo
continuo y uniforme, mejorando la suavidad y consistencia de la representación visual de
cada trazo, transmitiéndose como un paquete de datos continuo para emular el dinamismo
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de la entrada del usuario en tiempo real.

Bajo esta configuración, los usuarios de RA y RV crearon colaborativamente anota-
ciones 3D que permanecieron ancladas en el espacio (sketches), como se visualiza en la
Figura 5.1, empleando ambas arquitecturas de manera separada para evaluar su capaci-
dad de respuesta bajo condiciones realistas de red y seguimiento.

5.1.1. Configuración de los trazos

Para explorar un amplio rango de escenarios colaborativos, se definieron seis figuras
geométricas como plantillas de trazado, ilustradas en la Figura 5.2. Estas plantillas se
superpusieron visualmente en cada participante, sirviendo como guía dentro de un área
de dibujo de aproximadamente 25×25 centímetros. A cada participante se le indicó que
replicara las figuras en el espacio 3D trazando secuencialmente los vértices de la plantilla
en la dirección indicada, adaptando el protocolo presentado en [122].

La evaluación se realizó de forma bidireccional. Primero, el dispositivo de RA realizaba
las tareas de dibujo mientras que el dispositivo de RV realizaba la tarea de replicación.
Después, los roles se invertían, siguiendo esta metodología en ambas arquitecturas. Cada
figura se replicó 50 veces en ambos dispositivos, resultando en 300 pruebas por dirección de
transmisión y un total de 600 eventos anotados para cada tipo de arquitectura evaluada.

Figura 5.2: Seis figuras geométricas utilizadas como plantillas de trazado para probar
ambas arquitecturas desarrolladas. Las plantillas incluyen: (a) Línea, (b) Triángulo, (c)
Cuadrado, (d) Pentágono, (e) Círculo, y (f) Espiral. Los participantes trazan estas figuras
en el espacio 3D, siguiendo la dirección indicada por las flechas, para replicarlas con pre-
cisión. Los puntos azules representan el punto de inicio de cada trazo.

Si bien la plantilla visual estandarizó la ruta y el tamaño del trazo, la velocidad de
dibujo estuvo sujeta a variaciones naturales entre los participantes. Aunque se hicieron
esfuerzos para fomentar un ritmo moderado y constante en el dibujo de los trazos, no
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se impuso como una variable controlada. Dado que las principales métricas de interés
miden el tiempo de procesamiento del sistema por trazo (después de su finalización) y
no el rendimiento en tiempo real del envío punto por punto, se considera que el impacto
de la velocidad de dibujo en los resultados es mínimo. A lo largo de todas las pruebas,
ambos dispositivos registraron marcas de tiempo detalladas para cada trazo, incluyendo:
el tiempo de transmisión del mensaje al receptor, el tiempo de recepción de la respuesta
de eco del servidor (para la arquitectura centralizada) o del dispositivo emparejado (para
la arquitectura descentralizada) y el tiempo de finalización de la reconstrucción del trazo.

5.1.2. Métricas de evaluación

Para abordar la desincronización de los relojes entre dispositivos, se implementó un
protocolo personalizado de eco de mensajes. Las mediciones de latencia se realizaron en
rondas de transmisión alternas, donde solo un dispositivo actuaba como emisor por prueba.

En la arquitectura centralizada, al recibir un mensaje, el servidor SRV–C lo retransmitía
inmediatamente a todos los participantes, incluido el emisor original. El emisor registraba
tanto las marcas de tiempo de transmisión como de recepción del eco usando su propio reloj
local, mientras que el receptor registraba de forma independiente las marcas de tiempo de
recepción y reconstrucción dentro de su propio dominio de tiempo. Por el contrario, en
la arquitectura descentralizada, cada publicador transmitía el mensaje completo hacia un
tópico especifico, registrando los instantes de tiempo de transmisión como de recepción
del eco enviado por el suscriptor, ambos usando su propio reloj local. De esta manera, el
emisor mide el tiempo de respuesta en la red, mientras que el receptor mide el tiempo de
replicación y reconstrucción de mensajes.

Tabla 5.2 Registros de tiempo reportados por el emisor y el receptor

Emisor

t_1 Previo al envío de un mensaje desde el emisor.

t_2 Al recibir el mensaje de eco desde el receptor.

t_3 Después de la reconstrucción local del anclaje compartido.

Receptor

t_4 Al recibir el mensaje del trazo transmitido por el emisor.

t_5 Después de completar el renderizado visual y la reconstrucción del anclaje del trazo recibido.

Dentro de ambas arquitecturas, cada trazo transmitido preserva su identificador de
mensaje único en toda la retransmisión. Durante el postprocesamiento, estos identificadores
se utilizaron para emparejar los eventos correspondientes en los registros del emisor y del
receptor, permitiendo una alineación espacial coherente.
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Este diseño aseguró que todas las métricas de latencia se derivaran de dominios de
reloj internamente consistentes, eliminando imprecisiones debidas a desviaciones o desfases
espaciales y temporales. En la Tabla 5.2 se presentan los registros de tiempo obtenidos por
los dispositivos involucrados por cada trazo transmitido:

Partiendo de estas mediciones, se calcularon las siguientes métricas por cada prueba realizada:

• Número de puntos espaciales: Pn, requeridos para replicar un trazo.

• Tiempo de respuesta desde el emisor: ∆ts = t2−t1, para evaluar el ciclo de transmisión.

• Latencia de replicación: ∆tr = t5 − t4, que aísla el retardo desde la recepción hasta la
replicación visual.

• Velocidad de recreación: ∆tr/Pn, en puntos por segundo.

5.2. Resultados experimentales

El conjunto de resultados se analizó mediante estadística descriptiva (media, valor
mínimo, valor máximo y desviación estándar). El análisis se centra en caracterizar el
tiempo de respuesta del sistema y la sobrecarga de procesamiento, evaluando la capacidad
de ambas arquitecturas de red (SRV–C y SRV–D) para soportar colaboración en tiempo
real.

5.2.1. Latencia del sistema

Las Tablas 5.3 y 5.4 reportan los resultados en la transmisión ∆ts de ambas arqui-
tecturas bajo seis tipos de pruebas realizadas, categorizadas por dos dispositivos y las
figuras de prueba específicas. El Dispositivo A corresponde a un smartphone con Android
11 (Motorola One Hyper), equipado con un procesador Qualcomm Snapdragon 675, 4 GB
de RAM y una pantalla FHD+ de 6.5 pulgadas, utilizado para las interacciones API–AR.
El Dispositivo B, correspondiente a la configuración de un visor de realidad virtual Ocu-
lus Rift, fue conectado a un equipo de escritorio Alienware Aurora R7 con un CPU Intel
Core i7-8700, 16 GB de RAM y una GPU NVIDIA GTX 1080, utilizado para las tareas
API–VR.

En la arquitectura centralizada, los resultados revelan una disparidad fundamental
de rendimiento entre las dos plataformas de hardware. El Dispositivo A exhibió no solo
latencias promedio más altas, sino también una variabilidad significativamente mayor,
como lo indican sus grandes desviaciones estándar (σ: 80.63 ms y 91.38 ms) y amplios
rangos entre el valor mínimo y máximo de latencia registrado para todas las figuras. Por
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ejemplo, para la prueba PLinea, la latencia en el Dispositivo A varió entre 28 ms y 266
ms, mientras que para la prueba PEspiral, la latencia varió entre 29 ms y 472 ms. Este
patrón sugiere una volatilidad en el dispositivo móvil, probablemente debida a procesos
del sistema operativo que se realizan en segundo plano, limitación térmica o asignación
variable de recursos.

Tabla 5.3 Latencia de transmisión promedio de la arquitectura centralizada

Dispositivo Prueba x̄ (ms) min (ms) max (ms) σ (ms) Peso (kB)

A

PLinea 137.33 28 266 89.25 1.23

PTriangulo 139.90 25 352 87.30 2.89

PCuadrado 160.96 31 354 81.53 3.19

PPentagono 163.30 30 431 88.65 3.24

PCirculo 169.50 31 333 80.63 3.29

PEspiral 127.11 29 472 91.38 5.09

B

PLinea 57.71 10 124 37.85 1.84

PTriangulo 73.20 11 189 40.95 4.61

PCuadrado 63.51 10 178 40.44 3.95

PPentagono 69.57 11 165 41.04 4.49

PCirculo 80.45 11 321 53.33 6.72

PEspiral 90.16 23 234 57.87 11.07

Así mismo, se observa una relación entre la geometría de las figuras y la latencia
promedio en el Dispositivo A, donde algunas figuras geométricas como la Linea (137.33
ms) y el Triángulo (139.90 ms) presentan menores tiempos de respuesta comparado con
figuras como el Círculo (169.50 ms) y el Pentágono (163.30 ms). Una excepción sucede
con la Espiral (127.11 ms), que a pesar de tener el mayor tamaño de datos (5.09 Kb),
registró la latencia promedio menor.

Por el contrario, el Dispositivo B demostró latencias consistentemente más bajas y
estables. Sus desviaciones estándar fueron sustancialmente menores (entre 37.85 ms y 57.87
ms), y los rangos mínimo–máximo fueron más estrechos en todas las figuras, lo que indica
una mejor respuesta debido a la configuración de hardware más potente. Este rendimiento
puede visualizarse en la Figura 5.3, donde se contrasta la dispersión y medianas de ambos
dispositivos.

En cambio, en la arquitectura descentralizada, se presenta una respuesta diferente
entre ambos dispositivos. Para el Dispositivo A, se observa una mejora significativa en
el rendimiento, con reducciones de latencia que superan el 75 % en comparación con la
arquitectura centralizada. Las latencias promedio se mantienen en un rango notablemente
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Figura 5.3: Boxplot de la latencia total del sistema para cada uno de los seis tipos de
pruebas realizadas. El Dispositivo A corresponde a un smartphone Motorola One Hyper
(cliente API–AR), mientras que el Dispositivo B designa un visor Oculus Rift conectado
a un Alienware Aurora R7 (cliente API–VR).

estrecho (36.54 ms - 40.60 ms), con una variabilidad reducida significativamente (σ: 8.52-
14.82 ms). Esta consistencia sugiere que la arquitectura descentralizada mitiga las fuentes
de variabilidad presentes en la plataforma móvil.

La relación entre complejidad de figuras y latencia prácticamente desaparece en el Dis-
positivo A bajo la arquitectura descentralizada, indicando que el procesamiento distribuido
minimiza los problemas de rendimiento asociados con figuras más complejas. Así mismo,
el tamaño de los datos transmitidos muestra una reducción general en comparación con la
arquitectura centralizada, mejorando adicionalmente el rendimiento de la red.

No obstante, para el Dispositivo B, los resultados presentan un comportamiento con-
traintuitivo. Las latencias promedio (76.20 ms - 97.55 ms) son consistentemente superiores
a las observadas en la arquitectura centralizada para el mismo dispositivo. Este fenómeno
sugiere una saturación por el proceso de coordinación en la arquitectura descentralizada,
aunque la variabilidad se mantiene en rangos similares a la arquitectura centralizada.
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Tabla 5.4 Latencia de transmisión promedio de la arquitectura descentralizada

Dispositivo Prueba x̄ (ms) min (ms) max (ms) σ (ms) Peso (kB)

A

PLinea 36.54 29 64 8.52 1.07

PTriangulo 38.56 24 70 11.64 2.32

PCuadrado 39.75 28 99 14.82 2.47

PPentagono 40.60 27 69 12.64 2.30

PCirculo 40.32 28 68 11.41 2.35

PEspiral 38.47 26 72 11.92 3.76

B

PLinea 89.18 12 146 35.08 1.04

PTriangulo 87.21 22 145 31.04 2.60

PCuadrado 97.55 22 153 30.15 2.92

PPentagono 87.49 12 138 30.64 2.11

PCirculo 76.20 19 123 28.42 1.98

PEspiral 82.02 30 124 24.68 3.14

5.2.2. Latencia de replicación

Las Tablas 5.5 y 5.6 presentan la latencia de replicación ∆tr, que captura el retardo
en el lado del usuario desde la recepción del mensaje hasta la finalización del renderizado
visual. Esta métrica refleja la sobrecarga de procesamiento local una vez se completa la
transmisión de datos, utilizando los mismos dos dispositivos descritos en la Sección 5.2.1.

En la arquitectura centralizada, el Dispositivo B demostró un rendimiento inferior
en la latencia de replicación. Presentó latencias de replicación más altas en todas las
figuras de prueba con promedios entre 9.77 ms y 11.23 ms, comparados con los valores
registrados por el Dispositivo A, cuyos promedios oscilaban entre 1.94 ms y 3.50 ms.
Sin embargo, el Dispositivo B mostró una estabilidad más notable, como lo evidencian
las bajas desviaciones estándar registradas (σ: 2.18-3.64 ms) y rangos mínimo–máximo
más estrechos que el Dispositivo A, lo que sugiere que, si bien el dispositivo móvil puede
renderizar trazos muy rápido, es susceptible a retardos de procesamiento impredecibles,
probablemente debido a la contención de recursos en el sistema Android, contrario al
Dispositivo B que muestra un rendimiento más equilibrado.

En cambio, la implementación descentralizada demuestra mejoras significativas, parti-
cularmente en el Dispositivo B, donde se observa una reducción en las latencias de repli-
cación. Los valores descienden a rangos extraordinariamente bajos, con múltiples figuras
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(Triángulo, Cuadrado, Pentágono, Espiral) registrando latencias de replicación prome-
dio de 1 ms y desviaciones estándar prácticamente nulas.

Tabla 5.5 Latencia de replicación promedio de la arquitectura centralizada

Dispositivo Prueba x̄ (ms) min (ms) max (ms) σ (ms) N◦ de puntos

A

PLinea 1.94 0 76 9.85 14.01

PTriangulo 3.50 0 49 10.29 36.64

PCuadrado 2.21 0 76 10.18 41.60

PPentagono 1.09 0 15 2.50 41.51

PCirculo 3.07 0 62 11.56 42.49

PEspiral 1.68 0 35 5.10 67.40

B

PLinea 11.23 5 21 3.01 22.33

PTriangulo 10.94 5 16 2.58 60.97

PCuadrado 10.89 3 19 2.90 51.82

PPentagono 10.73 6 18 2.18 59.38

PCirculo 9.77 2 21 3.64 90.55

PEspiral 10.44 3 19 3.07 152.05

Tabla 5.6 Latencia de replicación promedio de la arquitectura descentralizada

Dispositivo Prueba x̄ (ms) min (ms) max (ms) σ (ms) N◦ de puntos

A

PLinea 2.23 0 48 7.19 11.73

PTriangulo 3.87 0 85 14.25 28.87

PCuadrado 1.98 0 55 7.14 31.18

PPentagono 1.01 0 24 3.07 28.70

PCirculo 0.60 0 9 1.24 29.36

PEspiral 2.72 0 82 12.00 48.57

B

PLinea 0.016 0 1 0.13 11.18

PTriangulo 0.00 0 0 0.00 32.32

PCuadrado 0.00 0 0 0.00 36.63

PPentagono 0.00 0 0 0.00 25.74

PCirculo 0.037 0 2 0.27 23.79

PEspiral 0.00 0 0 0.00 39.67
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Para el Dispositivo A, la arquitectura descentralizada mantiene latencias promedio
similares a la configuración centralizada (0.60–3.87 ms), pero con una reducción general
en su variación. Figuras como el Círculo muestran una mejora particularmente notable,
con una latencia promedio de 0.60 ms y desviación estándar de solo 1.24 ms, comparado
con 3.07 ms y 11.56 ms respectivamente en la arquitectura centralizada.

Cabe destacar que la relación entre la complejidad de la figura (tamaño del mensaje y
número de puntos) y la latencia de replicación es débil para ambos dispositivos, como se
muestra en la Figura 5.4. El Dispositivo B mantiene latencias estables a pesar del aumento
en el número de puntos, tanto en la arquitectura centralizada como descentralizada, mien-
tras que el Dispositivo A no muestra un comportamiento homogéneo entre la complejidad
y la latencia promedio. Sin embargo, todas las latencias de replicación medidas se mantu-
vieron muy por debajo de los 15 ms en promedio, valor imperceptible para una operación
de retroalimentación visual.

De acuerdo a los resultados de ambas arquitecturas, la descentralización revela una
dependencia de la plataforma objetivo. Para las pruebas con dispositivos móviles (Disposi-
tivo A), la arquitectura descentralizada provee mejores resultados en reducción de latencia.
En cambio, para la configuración del Dispositivo B, la arquitectura centralizada asegura
un mejor desempeño relacionado por el poder computacional del equipo y su optimización
para los estándares de comunicación utilizados.

Respecto al análisis entre el tamaño de datos y su relación con la latencia se demuestra
que la arquitectura descentralizada separa efectivamente estos parámetros en el dispositivo
móvil, mientras que en la arquitectura centralizada aún se mantienen relacionados.

La comparación también revela que la descentralización proporciona mejores beneficios
asimétricos. Para el Dispositivo B, la mejora es cuantitativamente superior, con reduccio-
nes de hasta el 70 % en latencia para la gran mayoría de las pruebas, resultado que permite
presentar a la arquitectura descentralizada como una solución más adecuada para la re-
ducción de los tiempos de procesamiento y la transmisión de mensajes, a pesar de que para
el Dispositivo A las mejoras fueron más sutiles.

Finalmente, los tiempos de replicación medidos se mantuvieron muy por debajo del
umbral de la percepción humana, confirmando la capacidad de ambas arquitecturas para
proporcionar una retroalimentación visual instantánea. No obstante, la superior consis-
tencia de la arquitectura descentralizada, principalmente en los resultados del Dispositivo
B, sugiere una experiencia de usuario más fluida y predecible, libre de los microretardos
ocasionales observados en la configuración centralizada.
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(a) Arquitectura centralizada

(b) Arquitectura descentralizada

Figura 5.4: Comparación de latencias entre las distintas figuras geométricas bajo diferentes
tamaños de mensaje y densidades de puntos. En (a) se visualizan los resultados obtenidos
bajo la arquitectura centralizada, mientras que (b) presenta los correspondientes a la ar-
quitectura descentralizada. En ambos casos, se añadió una línea divisoria aproximada que
clasifica los resultados obtenidos de los dos dispositivos.



Capítulo 6

Conclusiones generales y perspectivas

Este capítulo presenta las conclusiones generales de la investigación. Se aborda la con-
tribución que se realiza a la literatura y se finaliza con la discusión sobre investigaciones
y trabajos futuros.

En esta tesis se presentó una comparativa entre el sistema SRV–C, una arquitectura
centralizada y SRV–D, una arquitectura descentralizada para colaboración en tiempo real
y colocalizada entre experiencias virtuales y aumentadas. Ambos sistemas fueron diseñados
para operar completamente sobre redes locales sin depender de infraestructura propietaria.
El sistema integró un mecanismo de sincronización, un protocolo de comunicación inde-
pendiente de la serialización y APIs específicas para RA móvil y RV a escala habitación. La
evaluación experimental de latencia de transmisión y replicación confirmó que la colabo-
ración, haciendo uso de arquitecturas centralizadas, puede ser suficiente para experiencias
simples que requieren una consistencia espacial entre dispositivos heterogéneos, sobre todo
en aquellas actividades que requieren cargas de trabajo mínimas o moderadas.

Un hallazgo interesante en este análisis fue que los recursos de hardware si impac-
tan significativamente el comportamiento del sistema. Los resultados revelaron una clara
asimetría: la configuración de RV (Dispositivo B), quién presentó una capacidad de proce-
samiento superior, ofreció una latencia del sistema consistentemente menor y más estable,
totalmente opuesta a los resultados obtenidos desde el dispositivo de RA móvil (Disposi-
tivo A), quien exhibió mayor volatilidad a pesar de lograr menores tiempos promedio de
replicación. Esto abre nuevas oportunidades de estudio donde se pueda experimentar con
equipos de iguales capacidades de procesamiento, en lugar de intentar igualar o equiparar
las capacidades heterogéneas de los dispositivos, siendo interesante cuestionarse el grado
de relevancia que presenta la heterogeneidad en este tipo de experiencias.
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Así mismo, los resultados globales refuerzan la capacidad de las configuraciones des-
centralizadas para satisfacer las necesidades de colaboración en XR. Además, validan el
principio de diseño de adoptar la asimetría interactiva, permitiendo una participación di-
ferenciada por dispositivo según sus capacidades técnicas, guiando nuestra hipótesis de
que la descentralización es más que viable para la generación de nuevas experiencias XR
compartidas.

Respecto a nuestros objetivos planteados inicialmente, se consiguió el diseño y eva-
luación satisfactoria de un entorno distribuido con soporte multimodal y diversidad de
dispositivos, lo cual plantea nuevas líneas de exploración técnica. En trabajos futuros,
se pretende atender las restricciones operativas identificadas en esta investigación. Como
primer paso, se implementarán estrategias de sincronización dinámica, por ejemplo, colas
de eventos priorizadas en función del tópico en donde se publique, modular la frecuencia
de emisión de mensajes para evitar una saturación de la red y dar soporte a grupos de
usuarios más grandes a través de implementaciones Web y de blockchain, con las que se
permita diversificar geográficamente la experiencia. Así mismo, se realizarán estudios con
distintos tipos de interacción y se explorarán soluciones de transmisión de mensajes par-
ciales, sustituyendo el envío de paquetes íntegros por fragmentos parciales, sin incurrir en
bloqueos o colisión entre los mismos, lo que implica la incorporación de mecanismos de
consenso como Gossip, RAFT o Paxos, que no fueron implementados debido a la intención
de mantener una comparación equiparable entre ambas arquitecturas. Finalmente, esta-
blecer un esquema compacto de serialización más sofisticado podría abrir oportunidades a
establecer nuevos estándares de transmisión, por lo que se buscará realizar comparativas
más robustas entre serializadores de entornos XR.

Estos esfuerzos estarán guiados por el objetivo de transformar el sistema SRV–D de
un mero prototipo de investigación en una infraestructura extensible con potencial de
despliegue en entornos reales.



CAPÍTULO 6. CONCLUSIONES GENERALES Y PERSPECTIVAS 54

Trabajos generados durante el desarrollo del proyecto

• G. A. Murillo Gutierrez, R. Jin, J.-P. I. Ramirez-Paredes, and U. H. Hernandez Bel-
monte, “A framework designed with perceptual symmetry and interactive asymmetry
for XR collaboration,” Symmetry, vol. 17, no. 11, 2025.

• G. A. Murillo Gutierrez, R. Jin, J.-P. I. Ramirez-Paredes, and U. H. Hernandez
Belmonte, “ARCanvas: A Mobile-Based Collaborative Colocated AR Drawing Ap-
plication,” Communications in Computer and Information Science, vol. 2553, 2025.

• G. A. Murillo Gutierrez, R. Jin, J.-P. I. Ramirez-Paredes, and U. H. Hernandez
Belmonte, “A Framework for Collaborative Augmented Reality Applications,” In
Companion Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games, article 2, 1–2, 2025.

• U. H. Hernandez Belmonte, J.-P. I. Ramirez-Paredes, and G. A. Murillo Gutierrez,
“Diseño e Implementación de una Plataforma de Realidad Aumentada Colaborativa,”
Avances en sistemas Mecatrónicos, vol. 1, no.1, 2023.
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