UNIVERSIDAD DE GUANAJUATO

DIVISION DE INGENIERIAS
CAMPUS IRAPUATO-SALAMANCA

DISENO Y EVALUACION DE UN MODELO DE
COLABORACION MULTIMODAL, HETEROGENEO Y
DISTRIBUIDO PARA ENTORNOS INMERSIVOS

TESIS

QUE PARA OBTENER EL GRADO DE:

MAESTRO EN INGENIERIA ELECTRICA

OPCION: INSTRUMENTACION Y SISTEMAS DIGITALES

PRESENTA:

ING. GUSTAVO ADOLFO MURILLO GUTIERREZ

ASESOR:
DR. JUAN PABLO IGNACIO RAMIREZ PAREDES

CO-ASESOR:
DR. URIEL HAILE HERNANDEZ BELMONTE

SALAMANCA, GTO. ENERO, 2026

Agradecimientos institucionales

A la Secretaria de Ciencia, Humanidades, Tecnologia e Innovacion (Secihti), por el
invaluable apoyo econémico mediante la beca con registro ligado al No. CVU 1320374
(2023-2025), que hizo posible mi formacion en el programa de Maestria en Ingenieria
Eléctrica. Este trabajo representa el compromiso adquirido con su respaldo institucional.

Ciencia yTecnologia

Secretaria de Ciencia, Humanidades, Tecnologia e Innovacién

A la Universidad de Guanajuato, particularmente a la Division de Ingenierias del Cam-
pus Irapuato—Salamanca, por haberme abierto las puertas de su posgrado y brindarme una
formacion académica en el campo de la Instrumentacion y Sistemas Digitales, que hoy cul-
mina con la presentaciéon de esta tesis.

Il UNIVERSIDAD DE
| GUANAJUATO

Al Laboratorio de Vision, Robética e Inteligencia Artificial (LaViRIA), por proporcio-
narme acceso a sus instalaciones y equipos especializados, recursos fundamentales para el
desarrollo experimental de esta investigacion.

Resumen

Una experiencia inmersiva puede definirse como el resultado sensorial, perceptual y
emocional que experimenta un usuario al interactuar con un sistema capaz de generar una
sensacion de presencia en un entorno artificial. Una inmersiéon compartida, en contraste,
se refiere a la posibilidad de mantener experiencias inmersivas de manera conjunta entre
multiples usuarios, ya sea en espacios locales o remotos, de forma simultanea, sincrona o
asincrona.

Actualmente, la colaboracién inmersiva enfrenta exigencias técnicas que se intensifican
en entornos con dispositivos heterogéneos, donde las diferencias en capacidades de segui-
miento, visualizacién e interacciéon pueden comprometer la coherencia de la experiencia.
Aunque en la literatura se han propuesto soluciones a estos retos, la mayoria se basan en
arquitecturas centralizadas que, si bien son funcionales, presentan limitaciones criticas que
nos obligan a plantearnos la pregunta: ;Deberian las arquitecturas centralizadas seguir
siendo el eje principal de la colaboracién inmersiva?

Esta obra plantea que un paradigma de colaboraciéon descentralizado podria superar
dichas limitaciones, ofreciendo mejoras en la latencia, la robustez y la integracion multi-
modal. Para validar esta hipotesis, se disenaron, implementaron y evaluaron dos arquitec-
turas distribuidas para la colaboraciéon entre sistemas de realidad aumentada y realidad
virtual: una centralizada y otra descentralizada. Las pruebas se realizaron bajo las mis-
mas condiciones en cuanto a latencia, replicacion y coherencia espacial entre dispositivos
heterogéneos.

Los resultados obtenidos evidencian el potencial de las arquitecturas descentralizadas
como alternativa viable para la colaboraciéon inmersiva, representando una base sélida para
futuras investigaciones en sistemas XR.

II

Abstract

An immersive experience can be defined as the sensory, perceptual, and emotional
outcome that a user undergoes when interacting with a system capable of generating a
sense of presence within an artificial environment. In contrast, a shared immersion refers to
the possibility of sustaining immersive experiences jointly among multiple users, whether
in local or remote spaces, simultaneously, synchronously, or asynchronously.

Currently, immersive collaboration faces technical demands that intensify in environ-
ments with heterogeneous devices, where differences in tracking, visualization, and interac-
tion capabilities may compromise the coherence of the experience. Although the literature
has proposed solutions to these challenges, most rely on centralized architectures which,
while functional, present critical limitations that compel us to ask: Should centralized
architectures continue to be the main axis of immersive collaboration?

This work argues that a decentralized collaboration paradigm could overcome such li-
mitations, offering improvements in latency, robustness, and multimodal integration. To
validate this hypothesis, two distributed architectures for collaboration between augmented
reality and virtual reality systems were designed, implemented, and evaluated: one cen-
tralized and the other decentralized. The tests were conducted under identical conditions
regarding latency, replication, and spatial coherence among heterogeneous devices.

The results obtained highlight the potential of decentralized architectures as a viable

alternative for immersive collaboration, representing a solid foundation for future research
in XR systems.

II1

Abreviaciones y siglas

Sigla Término completo Descripciéon contextual
RA Realidad Aumentada Tecnologia que superpone elementos digitales
sobre el entorno fisico en tiempo real.
RV Realidad Virtual Tecnologia que genera entornos completamente
digitales, inmersivos y simulados.
RM Realidad Mixta Integracion de RA y RV, donde objetos fisicos
y virtuales coexisten e interacttian.
XR Realidad eXtendida Término paraguas que engloba RA, RV y RM.
HMD Head-Mounted Display Dispositivo montado en la cabeza que permite
visualizar entornos virtuales o aumentados.
IP Internet Protocol Protocolo que identifica y direcciona dispositi-
vos en una red para el envio de paquetes.
SDK Software Development Kit Conjunto de herramientas y librerias para desa-
rrollar aplicaciones especificas.
P2P Peer-to-Peer Arquitectura de red donde los dispositivos se co-
munican directamente sin una entidad central.
TCP Transmission Control Protocol Protocolo de transporte con conexion, garanti-
zando entrega ordenada y direccionamiento.
UDP User Datagram Protocol Protocolo de transporte sin conexioén, rapido pe-

ro sin garantia de entrega, ideal para datos sen-
sibles al tiempo.

v

Indice general

1 Introduccién a la colaboracién inmersiva

1.1 De experiencias aisladas a la colaboraciéon
1.2 Antecedentes histéricos de la colaboracion XR
1.3 Hipotesis
1.4 Objetivo general

1.4.1 Objetivos especificos
1.5 Delimitacion y alcance de la investigacion
1.6 Organizacion de la tesis Lo

2 Fundamentos para la descentralizacién en XR
2.1 Introducciéon a la colaboracién inmersiva
2.2 Principios de la computacion distribuida00 o000
2.3 Arquitecturas distribuidaso L
2.3.1 Arquitectura centralizada
2.3.2 Arquitectura descentralizada
2.3.3 Arquitectura hibrida oL
2.4 Protocolos de comunicacion L0
2.4.1 Envio de mensajes a través del protocolo TCP/IP
2.4.2 FEl dilema del transporte: TCP frente a UDP
2.4.3 Sockets.
2.5 Serializacion y formatos de mensajes L
2.6 Replicacion y consistencia de datos
2.6.1 Mecanismos de control y unicidado
2.7 Desafios técnicos en la colaboracion XR distribuida
2.7.1 Entornos de programacion XR y sus arquitecturas de conectividad .

3 Estado del arte
3.1 Arquitecturas centralizadas
3.2 Soluciones descentralizadas
3.3 Vacios conceptuales identificados en la literatura

4 Implementacién del sistema
4.1 Mecanica generalo
4.2 Diseno de la arquitectura centralizada
4.2.1 Conexiones y desconexiones
4.2.2 Gestion de usuarios

Oy UL O U = W — =

10
10
10
11
11
11
13
14
15
16
16
17
17

19
20
21
22

INDICE GENERAL

4.2.3 Matchmaking
4.2.4 Manejador de serializacion00
4.2.5 Bloque de difusiono
4.3 Diseno de la arquitectura descentralizada
4.3.1 Mecanismo de descubrimiento denodos
4.3.2 Gestion de sockets y conexiones
4.3.3 Flujo de operaciéon del sistemao
4.4 Diseno del entorno interactivo API-ARo
4.4.1 Diseno funcional L
4.4.2 Sincronizacion espacial mediante anclajes persistentes
4.4.3 Generacion y transmision de trazos espaciales
4.4.4 Recepcion, reconstruccion y animacion de trazos remotos
4.5 Diseno del entorno interactivo API-VR
4.5.1 Logica de interaccion
4.5.2 Logica de sincronizaciéon espacialo 000

5 Pruebas y resultados
5.1 Metodologia y validacion experimental
5.1.1 Configuraciéon de los trazos
5.1.2 Meétricas de evaluacion L
5.2 Resultados experimentales
5.2.1 Latencia del sistema
5.2.2 Latencia de replicacion

6 Conclusiones generales y perspectivas

VI

29
29
31
31
32
32
33
34
35
36
37
38
38
39
40

41
41
43
44
45
45
48

52

Indice de figuras

1.1

2.1
2.2

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4

Linea del tiempo con los hitos més relevantesen XR 3

Representacion de la distribucion de un sistema como una capa de middleware 9

Representacion de la distribucion en capas del protocolo TCP/IP 11
Perspectiva de las dos interfaces de usuario 25
Arquitectura centralizada SRV-C 26
Arquitectura descentralizada SRV-D 34
Proceso de generacion de trazos espaciales. 37
Mapa de distribucién espacialo 42
Figuras geométricas utilizadas en las pruebas 43
Boxplot de la latencia de replicacion centralizada 47
Distribucién de la latencia en las distintas pruebas 51

VII

Capitulo 1

Introduccion a la colaboracion
Inmersiva

En este capitulo se presenta un panorama general de la Realidad Aumentada (RA) y
la Realidad Virtual (RV) como sistemas colaborativos. Se examinan los antecedentes més
representativos que permitieron la creaciéon y la evolucion de este campo, destacando los
principales retos que enfrenta la nueva generacion de este tipo de experiencias. Posterior-
mente, se sugiere la creaciéon de un nuevo marco conceptual de colaboracion, el principal
aporte de este trabajo. Como cierre, se resume la organizacion general de la tesis, senalan-
do como contribuye cada capitulo al cumplimiento de la hipotesis y los objetivos de esta
investigacion.

1.1. De experiencias aisladas a la colaboracion

La RA y la RV han pasado de ser experiencias aisladas a convertirse en la préxima
generacion de herramientas colaborativas [1]. Su capacidad de complementar o reemplazar
la percepcion del entorno fisico ha abierto nuevos paradigmas de aprendizaje [2|, diseno [3],
comunicacion y difusion del conocimiento [4]. Sin embargo, en paralelo a su crecimiento, la
aparicion de ecosistemas inmersivos cada vez mas complejos se vuelve evidente, haciéndose
necesaria la ubicuidad entre sus distintas modalidades de interacciéon; una integraciéon
de experiencias hibridas entre RA y RV, habitualmente enmarcadas bajo el término de
Realidad eXtendida (XR).

XR es un concepto que generaliza la nocion de Realidad Mixta (RM), asi como to-
das sus posibles modalidades o variantes, a lo largo del continuo de virtualidad descrito
por Milgram [5]. Al extender su campo de aplicacion a areas como la educacion |6, 7|, la
medicina [8], el disenio industrial o la capacitacion remota [9], entre otras, se han identi-

CAPITULO 1. INTRODUCCION A LA COLABORACION INMERSIVA 2

ficado limitaciones que afectan la fluidez, la experiencia y la calidad de la colaboracion.
Para ilustrar estas limitaciones, considérese, como ejemplo, un escenario en el que coinci-
den usuarios equipados con visores de RV, dispositivos moviles con RA y computadoras
de escritorio convencionales. Esta diversidad de dispositivos, con diferencias en capacidad
de computo, sensado, visualizacion e interaccion, se denomina entorno heterogéneo. Si las
disparidades de este entorno no se contemplan en el diseno de un sistema colaborativo, la
experiencia compartida entre los usuarios se fragmenta, la colaboracion se debilita, ademas
la sensacion de presencia y coherencia espacial se reduce |10, 11].

Para este tipo de escenarios hibridos, los desafios encontrados en la literatura espe-
cializada se agrupan generalmente como tres retos centrales a resolver: (i) alcanzar una
sincronizacion precisa entre las plataformas involucradas (colaboracién en tiempo real);
(ii) garantizar interoperabilidad entre los dispositivos dispares (heterogeneidad); y (iii) di-
senar modelos de interaccion que puedan sostener tanto configuraciones simétricas como
asimétricas (multimodales) [12, 13].

Una soluciéon ampliamente adoptada para abordar estos retos ha sido el uso de ar-
quitecturas centralizadas como nucleo de la colaboracion [14, 15, 16]. En este tipo de
arquitecturas, un servidor, también conocido como nodo maestro o dispositivo central, se
encarga de sincronizar y distribuir los datos entre todos los usuarios, una soluciéon que
ha demostrado ser efectiva al mantener la coherencia e intermediar en la resolucién de
conflictos. Plataformas comerciales como Photon Engine [17], Unity Netcode [18], Mirror
[19] o Microsoft Azure PlayFab [20] ofrecen entornos accesibles que facilitan el desarrollo
y el despliegue de prototipos colaborativos con este mismo esquema de solucion.

No obstante, las soluciones centralizadas suelen presentar algunas limitaciones signifi-
cativas: concentran el trafico en un tnico dispositivo, disponen de una escalabilidad limi-
tada, incrementan los tiempos de respuesta conforme crece el nimero de usuarios y son
vulnerables a sufrir puntos tnicos de falla, como la interrupcion total del sistema ante
la desconexiéon del nodo maestro encargado de la comunicacién. Ademas, si se depende
de soluciones propietarias, se restringe la personalizacion y apertura tecnoldgica, condi-
cionando la investigacion abierta. Estas condiciones plantean la necesidad de reconsiderar
si dicho enfoque debe seguir siendo el eje principal de la colaboracién inmersiva, y abren
la posibilidad de explorar modelos alternativos més réapidos, consistentes y robustos para
entornos XR heterogéneos.

Durante el resto de este trabajo se profundizara en la conceptualizacion, implementa-
cion y validacion de un modelo de comunicacion descentralizado, disenado para responder
a los desafios identificados en entornos colaborativos de XR. A través de este modelo,
construido bajo la filosoffa de codigo libre, se mostrard una comparativa solida entre es-
tos dos tipos de arquitecturas de colaboracién inmersiva: arquitectura centralizada vs.
arquitectura descentralizada, con la que se permita dar soluciéon a las condiciones ante-
riormente planteadas, asentando las bases de futuras lineas de investigacion en interaccion
multimodal, coordinaciéon en tiempo real y diseno de sistemas XR colaborativos.

CAPITULO 1. INTRODUCCION A LA COLABORACION INMERSIVA 3

1.2. Antecedentes historicos de la colaboracion XR

Una de las primeras iniciativas documentadas en la literatura sobre inmersion cola-
borativa fue Cave Automatic Virtual Environment (CAVE) [21]. En el sistema CAVE, se
acondicioné un entorno rectangular para proyectar imagenes estereoscopicas directamente
sobre superficies fisicas, como los muros y el suelo. Esta configuraciéon permitié generar
una sensacion de inmersion sin recurrir a dispositivos de visualizacion individual como los
visores HMD (Head-Mounted Display), lo que facilito la interaccion simultanea de varios
participantes en el mismo espacio compartido.

Aunque CAVE supuso un hito relevante en la evolucién de la colaboraciéon inmersiva en
entornos presenciales, el proyecto Distributed Interactive Virtual Environment (DIVE) [22]
presenté una perspectiva diferente: la colaboracion a distancia. En DIVE se desarrollé una
plataforma multiusuario en la cual los participantes podian interactuar virtualmente, acce-
diendo desde estaciones independientes con configuraciones heterogéneas. Esta diferencia
en su arquitectura marcé un punto de inflexion en el desarrollo de las experiencias cola-
borativas en XR, al pasar de experiencias colocalizadas a escenarios remotos que exigian
nuevos mecanismos de sincronizacion, replicacion y coherencia entre entidades virtuales.

Esta transicion no fue instantanea, sino que se desarrolld6 mediante diversas aproxi-
maciones complementarias dentro del continuo de modalidades XR, resumiendo las mas
relevantes en la Figura 1.1. Por ejemplo, Macedonia y Zyda [23] implementaron NPSNET-
IV, un mundo virtual con elementos tridimensionales que incorpor6 el protocolo IEEE 1278
DIS [24] junto con la difusién mediante multicast IP, tecnologias adoptadas en contextos de
entrenamiento militar. En cambio, Greenhalgh y Benford [25] propusieron MASSIVE, un
esquema de consistencia espacial, orientado a procesar los componentes graficos en funcion
de su proximidad dentro del espacio digital.

®
DIVE | MASSIVE | ARToolkit | Studierstube ARKit Mesh | SRVS-C
CAVE | 7993 | 1995 1999 2002 2017 2020 | 2023
N
7
NPSNET | AR?Hockey | DWARF Vuforia ARCore Meta Quest
1994 1998 2001 2011 2018 2023
]

Figura 1.1: Linea del tiempo con los hitos mas relevantes en la evolucion de las experiencias
XR colaborativas a lo largo de los ultimos treinta anos.

A comienzos de los anos 2000, el campo de la RA dio lugar a estudios relevantes como
AR?Hockey, por Ohshima et al. [26], que evidenciaron la posible sincronizacién entre ele-
mentos virtuales y objetos reales. En paralelo, ARToolkit contribuy6 al desarrollo de apli-
caciones colaborativas mediante técnicas de mapeo visual distribuido en miltiples disposi-

CAPITULO 1. INTRODUCCION A LA COLABORACION INMERSIVA 4

tivos [27]. En cambio, Distributed Wearable Augmented Reality Framework (DWARF)[28],
presentado por Bauer et al. , introdujo una estructura méas formalizada, proponiendo una
arquitectura portatil compuesta por modulos remotos. Asi mismo, el sistema de estudio
enriquecido Studierstube de Schmalstieg et al. [29], propuso emplear proyeccion y visua-
lizacion tridimensional para el anéalisis colocalizado bajo una configuracion heterogénea,
propuesta que adelanté los principios de la interacciéon ubicua y colaboracion local entre
multiples usuarios.

Pese a que estos aportes sucedieron en un mismo periodo, cada uno adoptéd enfoques
particulares que demostraron la viabilidad de la colaboraciéon entre este tipo de entornos.
Plataformas como Vuforia Engine [30], Apple ARKit [31] y Google ARCore [32], tam-
bién impulsaron su adopciéon al integrar funciones que hoy resultan fundamentales en la
creacion de experiencias aumentadas entre las que se destacan el seguimiento espacial, la
persistencia y la sincronizacion entre usuarios [33, 34]. En afios mas recientes, plataformas
como Microsoft Mesh [35] y Spatial Systems [36], asi como los SDKs (Software Develop-
ment Kits) Meta XR Core [37], Apple RealityKit [38], Mixed Reality Toolkit [39] y Unity
XR [40], han impulsado el disefio de arquitecturas hibridas que combinan computacion
en la nube y representacion espacial compartida, habilitando modalidades avanzadas de
interaccion en ecosistemas XR.

No obstante, aunque la colaboraciéon centralizada se considera el modelo de comuni-
cacion por excelencia, ain son escasos los trabajos que exploran sistemas desarrollados
bajo este paradigma. Como antecedente del presente trabajo, se cuenta con una tesis de
licenciatura defendida en 2023 [41], la cual abordé la colaboracién aumentada entre dispo-
sitivos moviles. Esta investigacion sento las bases para el desarrollo de SRVS—C (Spatially
Referenced Virtual Synchronization for Collaboration) [42], un primer modelo de colabora-
cion hibrido entre RA y RV, cuya implementacion permite examinar con mayor detalle las
limitaciones técnicas que, abordadas en extenso en el Capitulo 3, sustentan la necesidad
de replantear las aproximaciones actuales y explorar nuevos esquemas colaborativos.

1.3. Hipoétesis

Gran parte de las soluciones adoptadas en el disenio de ambientes inmersivos comparti-
dos recurren a paradigmas de red centralizados. Aunque una solucién centralizada es mas
que suficiente en miltiples escenarios, se pone en discusion su adopciéon como eje central
en la colaboracion entre este tipo de entornos. Ante esta marcada tendencia, se plantea
que un paradigma de colaboraciéon descentralizado podria ofrecer mejoras considerables,
manifestadas en un menor tiempo de sincronizaciéon, mayor robustez frente a errores, e
incremento en la capacidad de integracion en tareas colaborativas sin afectar la percepcion
espacial ni el origen de la interaccion. De esta manera, para la validacion de esta hipotesis,
se establecen los siguientes objetivos que permitan evaluar técnica y conceptualmente el
modelo sugerido.

CAPITULO 1. INTRODUCCION A LA COLABORACION INMERSIVA 5

1.4. Objetivo general

Disenar, implementar y someter a evaluaciéon un esquema de comunicacion distribuido
y multimodal, orientado a entornos colaborativos que integren dispositivos heterogéneos
en escenarios virtuales y aumentados.

1.4.1. Objetivos especificos

e Disenar una arquitectura descentralizada que garantice la sincronizacién precisa de
los estados espaciales entre soluciones basadas en RA y RV.

e Proponer un esquema compacto y multiplataforma para la representacion de datos
que facilite la transmisién de ambientes virtuales.

e Someter a validaciéon una arquitectura descentralizada mediante métricas cuantita-
tivas, evaluando parametros como la latencia, la coherencia del estado compartido y
la percepcion de continuidad en la experiencia colaborativa.

1.5. Delimitacién y alcance de la investigacion

Debido a la naturaleza multidisciplinaria y el grado de complejidad técnica del pre-
sente trabajo, se han definido los siguientes criterios para delimitar el alcance de esta
investigacion:

Tecnologia: La fase experimental se ha centrado en dispositivos moéviles compatibles con
Google ARCore [43] y en unos visores Oculus Rift con un par de controladores de
seis grados de libertad (6DoF). Se excluye el uso de visores de tltima generacion
(HoloLens 2, Meta Quest 3, Apple Vision Pro), asi como de sistemas completamen-
te vestibles o de cualquier configuraciéon que dependa de sensores externos de alta
precision.

Evaluacion experimental: Las pruebas se desarrollaron sobre un espacio de escala de
habitacion (3 x 3 metros), utilizando métricas como el retraso en la sincronizacion y
el tiempo que tarda la replicacion de una operacion. No se incluyen un anélisis del
consumo de recursos computacionales ni se realizan pruebas con usuarios finales o
condiciones operativas reales.

Paradigma arquitectoénico: Se contrastan dos modelos de colaboraciéon: una arquitec-
tura centralizada y una arquitectura descentralizada, ambas desarrolladas mediante
librerias de codigo libre para asegurar el control completo sobre las implementacio-
nes. Dado que no existen modelos abiertos fieles a los objetivos de esta investigacion,
se excluyen comparaciones con soluciones comerciales, plataformas propietarias o
esquemas hibridos que dependan de servidores externos.

CAPITULO 1. INTRODUCCION A LA COLABORACION INMERSIVA 6

Componentes funcionales: La investigacion se enfoca en cuatro modulos clave para la
comparacion: (i) sincronizacion de estados espaciales (posicion y orientacion), (ii)
gestion de sesiones multiusuario, (iii) intercambio de entradas multimodales (movi-
mientos, gestos, eventos), y (iv) visualizacion coherente del entorno compartido.

1.6. Organizacién de la tesis

Con el proposito de presentar de forma lineal los aspectos tedricos, técnicos y experi-
mentales vinculados a esta propuesta de descentralizacién inmersiva, esta tesis se organiza
en seis capitulos. A continuacion, se resume brevemente el contenido que se podra encon-
trar en cada uno de ellos:

Capitulo 1 — Introducciéon. Presento el marco general de la investigacion, incluyendo
los antecedentes tecnologicos y conceptuales, la justificacion del estudio, la formulacion de
la problematica, los objetivos, la hipotesis, las delimitaciones del proyecto y la organizaciéon
del documento.

Capitulo 2 — Fundamentos tedricos. Se introducen los conceptos técnicos nece-
sarios para comprender la propuesta, que contempla principios de entornos distribuidos,
sincronizaciéon en redes, tolerancia a fallos y modelos de interaccién multimodal.

Capitulo 3 — Estado del arte. Expone un andlisis critico de la literatura especia-
lizada sobre arquitecturas colaborativas para sistemas XR. Se examinan las restricciones
que presentan los enfoques centralizados y se identifican los vacios que dan origen a esta
propuesta.

Capitulo 4 — Implementacién. Documenta detalladamente el diseno arquitectonico
del sistema, que incorpora diagramas, estructuras y esquemas de comunicacion. Asimismo,
se introduce el proceso de implementacion del sistema.

Capitulo 5 — Metodologia y resultados. Describe la metodologia empleada para
la evaluacion de la propuesta. Se detallan las especificaciones técnicas, los instrumentos
empleados, los criterios de evaluacion y el protocolo experimental definido. Posteriormente
se presentan las pruebas realizadas y el analisis comparativo de los resultados obtenidos.

Capitulo 6 — Conclusiones y trabajo futuro. Sintetiza los resultados méas re-
levantes de la investigacion, analizando los aspectos técnicos y conceptuales de ambas
arquitecturas. Posteriormente, se recapitulan los objetivos de este trabajo y se proponen
lineas de investigacion y trabajos futuros orientados a la mejora en la colaboracion XR.

Capitulo 2

Fundamentos para la descentralizacion
en entornos XR

En este capitulo se presenta el contenido técnico necesario para comprender los funda-
mentos de la computacion distribuida, abordando sus principios operativos, las arquitec-
turas mas representativas y diversos modelos de comunicacion, replicacion, consistencia y
sincronizacion de estados. El capitulo concluye con una revision de las principales herra-
mientas utilizadas en la creacion de experiencias XR.

2.1. Introducciéon a la colaboracién inmersiva

La evolucion de la colaboracion inmersiva ha estado marcada por dos enfoques pre-
dominantes: la realidad extendida y el concepto de metaverso. Este tltimo, concebido
inicialmente como una vision futurista de interaccion social en entornos virtuales, aparecié
por primera vez en la novela Snow Crash de Neal Stephenson [44], una historia distopica
que sucede en un extenso mundo virtual que coexiste con el mundo fisico. En 2021, la
empresa Meta retomd esta nocion, atrayendo el interés de medios, industrias tecnologicas
y usuarios al materializar un concepto que hasta entonces pertenecia a la ficcion [45].

La XR, en cambio, constituye un modelo conceptual orientado al disenio de entornos
interactivos. Representa un conjunto tecnologico amplio que busca integrar de manera
fluida el espacio fisico con escenarios completamente virtuales [46]. Su evolucion ha estado
marcada por la convergencia de modalidades como la realidad aumentada, que proyecta

CAPITULO 2. FUNDAMENTOS PARA LA DESCENTRALIZACION EN XR 8

elementos digitales sobre el mundo real [47]; la realidad virtual, que introduce al usuario
en escenarios tridimensionales generados por computadora [48]; y la realidad mixta, que
permite la cohabitacion e interaccion en tiempo real entre objetos fisicos y digitales.

Esta interaccion se enriquece mediante el uso de interfaces multisensoriales de entrada
y salida que integran sentidos y canales de difusion de manera simultéanea [49], buscando
emular los patrones de la comunicacion humana [50]. Ademaés de los dispositivos de entrada
clasicos (pantallas tactiles y controladores), se han integrado progresivamente tecnologias
de reconocimiento de comandos por voz y didlogos [51], reconocimiento de gestos faciales,
de manos [52, 53] y corporales para la manipulacion directa de objetos [54], seguimiento
ocular que permite deducir la intencion del usuario y su punto de interés [55], asi como
retroalimentaciones visuales, sonoras, olfativas, gustativas o electro estimulantes (hapticas)
como medios de salida para proporcionar una sensacion de tacto y presencia fisica |56, 57].

Cuando estos principios se extienden a dinamicas grupales, se produce entonces una
colaboracién inmersiva multimodal. Pero esta capacidad de crear espacios compartidos
y coherentes no es solo una cuestion de integraciéon de hardware de ultima generacion.
Representa un reto técnico de alta complejidad de ingenieria de software que se remite
a la computacion distribuida. En consecuencia, analizar sus restricciones, arquitecturas y
soluciones técnicas que permiten la colaboracion hace indispensable una familiarizacién
con sus principios operacionales.

2.2. Principios de la computacién distribuida

Se entiende por sistema distribuido un conjunto de computadoras auténomas que
cooperan entre si para ofrecer una experiencia unificada y coherente al usuario [58]. El
concepto de “usuario” abarca tanto personas como aplicaciones y dispositivos que acceden
a los servicios del sistema. La clave de este modelo es que la comunicacion y la colaboracion
entre sus componentes ocurren de forma oculta, de modo que las complejidades técnicas
permanecen invisibles para los usuarios del sistema.

Estos sistemas se construyen con el proposito de ofrecer un acceso eficiente, controlado
y confiable a recursos que se encuentran tibicados fisicamente en distintos lugares. Dichos
recursos abarcan desde el almacenamiento, capacidad de computo, bases de datos, hasta
elementos como impresoras, servicios multimedia o redes de comunicaciéon. Su distribu-
cion no solo optimiza el uso de los recursos y reduce costos operativos, sino que también
fomenta la colaboracion y la interconexion a gran escala, siendo Internet el ejemplo mas
representativo al posibilitar el intercambio de mensajes, archivos, aplicaciones y contenidos
audiovisuales entre millones de usuarios.

Existen dos niveles complementarios que permiten comprender a un sistema distribuido.
El primero es el nivel fisico, relacionado con el hardware que contempla la disposicion real

CAPITULO 2. FUNDAMENTOS PARA LA DESCENTRALIZACION EN XR 9

Computadora 1 Computadora 2 Computadora 3 Computadoran
4 N\ (N\ 4 N\ 4 1\
Aplicacion Aplicacion Aplicacion Aplicacion
A B C D
Capa de distribucion del sistema
(middleware)
Sistema Operativo Sistema Operativo Sistema Operativo Sistema Operativo
Local1 Local 2 Local 3 Localn
(. J (. J (. J (. J

Figura 2.1: Representacion de la distribucién de un sistema como una capa de middleware.
Imagen adaptada de Tannenmbaum [58].

de los dispositivos (servidores, estaciones de trabajo, sensores) y la infraestructura de
comunicacion que los interconecta. El segundo es el nivel 16gico, asociado al software, que
constituye el enfoque principal de este trabajo. En este nivel se abstraen los detalles fisicos
para definir como los componentes se comunican, cooperan y se integran para cumplir los
objetivos del sistema, lo cual se materializa mediante arquitecturas de software y reglas de
interaccion bien establecidas entre los usuarios.

Una caracteristica esencial de los sistemas distribuidos es su autonomia: permite ac-
tualizar, reemplazar o reconfigurar partes del sistema sin interrumpir su operaciéon global.
Si se visualiza a un sistema distribuido como un sistema compuesto por distintas capas,
donde la capa inferior corresponde al sistema operativo y la capa superior a las aplicacio-
nes, tal y como se ilustra en la Figura 2.1, podria introducirse una capa intermedia entre
ambas para gestionar la comunicacion entre las aplicaciones y el sistema operativo. Esta
capa intermedia de distribucién, también conocida como middleware, idealmente deberia
cumplir con tres propiedades fundamentales:

1. Transparencia: Oculta la complejidad del sistema al usuario.
2. Apertura: Garantiza la interoperabilidad mediante estdndares.

3. Extensibilidad: Permite la integracion de nuevos componentes sin comprometer la
operacion general.

No obstante, disenar este tipo de sistemas no se reduce tinicamente a conectar compo-
nentes autonomos bajo una logica comun. En la practica, se enfrentan retos relacionados
con la sincronizacion de procesos, la consistencia de los datos, la robustez y la seguridad.
A continuacioén, se analizan las arquitecturas y modelos mas representativos que permiten
materializar dichos principios.

CAPITULO 2. FUNDAMENTOS PARA LA DESCENTRALIZACION EN XR 10

2.3. Arquitecturas distribuidas

Una arquitectura representa el esquema estructural sobre el cual se construye un sis-
tema, definiendo sus componentes, mecanismos y reglas de comunicaciéon e interaccion
[59]. En un sistema distribuido, esta organizacion se divide en tres variantes principales:
centralizada, descentralizada e hibrida.

2.3.1. Arquitectura centralizada

En una arquitectura centralizada, la coordinaciéon y el intercambio de recursos se rea-
lizan mediante un dispositivo o nodo principal, cominmente denominado servidor. Los
demés nodos, denominados clientes, realizan peticiones a este servidor para comunicarse
con el resto de los dispositivos, siendo el modelo cliente-servidor el ejemplo més represen-
tativo.

En este modelo, la interaccion sigue el patron peticion-respuesta: el cliente envia un
requerimiento con los datos necesarios, posteriormente el nodo servidor procesa y devuelve
una respuesta. Su adopciéon se debe a su simplicidad, centralizar la 16gica de comunica-
cion permite controlar, administrar y asegurar la coherencia de los datos desde un tnico
dispositivo.

2.3.2. Arquitectura descentralizada

En cambio, una arquitectura descentralizada distribuye tanto los recursos como las
responsabilidades de coordinacién entre los demas dispositivos. En esta arquitectura, los
nodos acttian simultaneamente como emisores y receptores, compartiendo recursos y co-
laborando de manera directa sin necesidad de un dispositivo principal. Esta descentra-
lizacién, sin embargo, introduce una mayor complejidad en la logica de sincronizacion,
especialmente en operaciones que requieren coherencia espacial, replicacion simultanea o
resolucion de conflictos en tiempo real. Las redes peer-to-peer (P2P) son el ejemplo més
representativo de este esquema.

Esta arquitectura ofrece una mayor robustez ante errores, ya que el sistema no se ve
comprometido por la caida, el corte o la suspension de un nodo. Asi mismo, facilita la es-
calabilidad, pues los recursos disponibles crecen al incorporar nuevos nodos. Aplicaciones
de comunicacion descentralizada como Skype en sus primeras versiones [60], o infraestruc-
turas maés recientes como la blockchain [61] usan una implementacion directa de este tipo
de arquitecturas.

CAPITULO 2. FUNDAMENTOS PARA LA DESCENTRALIZACION EN XR 11

2.3.3. Arquitectura hibrida

Las arquitecturas hibridas integran caracteristicas de los modelos centralizados y des-
centralizados, con el fin de aprovechar sus ventajas y cubrir sus limitaciones. En las arqui-
tecturas hibridas, ciertos nodos coordinan tareas especificas, mientras que otros operan de
forma auténoma y colaborativa. Esta arquitectura resulta especialmente ttil en entornos
dinamicos o heterogéneos, donde los nodos cuentan con capacidades y recursos dispares con
distintos objetivos y tareas, siempre y cuando su implementacion separe los mecanismos
centralizados y descentralizados.

2.4. Protocolos de comunicacion

Independientemente de la arquitectura logica empleada en un sistema distribuido, los
entornos XR colaborativos enfrentan uno de sus desafios mas exigentes: la coherencia
espacial. Crear la ilusion de un espacio compartido y coherente se reduce a la capacidad
de una arquitectura de red para sincronizar el estado del mundo virtual entre multiples
participantes con el menor retraso posible en la actualizaciéon de este.

En el nicleo de toda comunicaciéon en Internet, y por extension en aplicaciones XR
colaborativas que dependen de redes IP (Internet Protocol), se encuentra la familia de
protocolos TCP/IP (Transmission Control Protocol/Internet Protocol)|62]. Este modelo
estandarizado organiza la comunicacion en cinco capas que, trabajando de manera concer-
tada como se visualiza en la Figura 2.2, permiten el transporte de datos desde la aplicacion
hasta el medio fisico y viceversa.

i i Datos de
Capa de aplicacién @ aplicacion
Capa de transporte |© Encabezado
P P © de transporte
Capa de red |5 Encabezado
o dered
Capa de enlace |5 |Encabezado Pie de
L |de enlace enlace
Capa fisica y Medio fisico

Figura 2.2: Representacion de la distribucion en capas del protocolo TCP/IP. Imagen
adaptada de Glazer |62].

2.4.1. Envio de mensajes a través del protocolo TCP /IP

El proceso de transmision de datos a través de la familia de protocolos de comunicacion
TCP/IP puede entenderse como la construccion progresiva de un mensaje que atraviesa
cada capa de este modelo de arquitectura de red. Cada nivel anade informacién especi-

CAPITULO 2. FUNDAMENTOS PARA LA DESCENTRALIZACION EN XR 12

fica para su correcta entrega [63]. Cuando una aplicacién necesita enviar datos, inicia el
siguiente proceso de encapsulamiento.

En la capa de aplicacion, los datos generados se estructuran segun el formato deseado
por la aplicaciéon destino. Estos datos pueden incluir informaciéon como el tipo de mensaje,
tiempo de generacion, identificadores, propiedades, asi como cualquier otro dato de interés,
conformando el segmento de aplicacion.

Este primer segmento pasa a la capa de transporte, donde segtun el protocolo de trans-
porte elegido, tipicamente TCP (Transmission Control Protocol) o UDP (User Datagram
Protocol), se encapsula con una cabecera adicional. En el caso de UDP, la cabecera ana-
de el puerto de origen y de destino, la longitud del mensaje y la validacién del mensaje
(checksum). Mientras que, de usarse TCP, se anadirian ademéas nimeros de secuencia y
acuses de recibo, formando con ello el segmento de transporte.

El segmento de transporte llega a la capa de red, cuyo elemento fundamental es la
direccion IP, un identificador numérico tinico que distingue cada dispositivo conectado a la
red. La asignacion de una direccion IP puede ser estatica (configurada manualmente para
dispositivos criticos como servidores) o dindmica, que asigna y cambia automaticamente
direcciones disponibles a los dispositivos que se conectan. En esta misma capa, se encapsula
una cabecera IP que contiene las direcciones IP de origen, de destino, el protocolo de
transporte utilizado, mecanismos para prevenir bucles infinitos y otros campos de control.
Esta nueva encapsulacion forma el paquete IP, que ahora puede ser compartido a través
de miltiples redes intermediarias.

En la capa de enlace de datos, el paquete IP se encapsula dentro de una trama especifica
del medio fisico (Ethernet, Wi-Fi, etc). Se aniaden las direcciones MAC (Media Access
Control) del dispositivo origen, informacion de control de acceso al medio y una secuencia
de verificacion de la trama de datos para la deteccidén de errores, formando la trama de
enlace.

Finalmente, en la capa fisica, la trama de enlace, que integra todas las demas tramas
de informacion realizadas hasta el momento, se convierte en senales eléctricas, electro-
magnéticas u opticas segin el medio de transmision (cable coaxial, fibra optica, ondas de
radio), listas para ser transmitidas a través del medio fisico. Aunque comtinmente las capas
maés relevantes que se manipulan son las de transporte (responsable de la comunicacion de
extremo a extremo) y la capa de aplicacion (donde residen los protocolos especificos de la
colaboracion), la comprension integral de toda la familia de protocolos de comunicacion
TCP/IP resulta ser clave para trabajos de optimizacion y rendimiento.

CAPITULO 2. FUNDAMENTOS PARA LA DESCENTRALIZACION EN XR 13

2.4.2. El dilema del transporte: TCP frente a UDP

La eleccion del protocolo de transporte define el estandar de comunicacién que se usara
entre los componentes de un sistema [64]. TCP es un protocolo orientado a la conexion que
garantiza la entrega ordenada y sin errores de todos los paquetes. Esto se consigue mediante
acuses de recibo y retransmisiones automaéticas en caso de pérdidas. Esta confidencialidad
lo hace ideal para datos de control y estado criticos que deben llegar intactos, como la
logica de aplicacion, la creacion o destruccion de objetos o la sincronizacion de un estado
persistente. Sin embargo, sus mecanismos de control y retransmision introducen retrasos
variables que son considerables para la sincronizaciéon en tiempo real.

UDP, en cambio, envia paquetes (llamados datagramas) sin garantia de entrega, orden
o integridad. Esta falta de sobrecarga lo hace més rapido y con retardos significativamente
bajos, lo que lo hace adecuado para la transmisién continua de datos sensibles al tiem-
po, como operaciones de seguimiento, transmisiones de voz o actualizacion de avatares.
Es decir, cualquier dato obsoleto que resulte menos valioso que un nuevo dato actual,
es preferible descartar su perdida y esperar la siguiente actualizaciéon que esperar su re-
transmision. Dadas estas diferencias, es habitual que las arquitecturas modernas empleen
distintos protocolos y adopten enfoques hibridos.

Tabla 2.1 Dominios de comunicacion en sockets Berkeley

Dominio Descripcion

AF_INET Comunicacion sobre IPv4, utilizada en arquitecturas cliente-servidor convencio-
nales.

AF_INET6 Comunicacion sobre |IPv6, adecuada para entornos modernos con direcciona-
miento extendido.

AF_UNIX Comunicacion local entre procesos mediante archivos de socket, Gtil para prue-
bas.

AF_PACKET Acceso directo a nivel de enlace (Ethernet).

AF_NETLINK Canal de comunicacion entre el kernel y el espacio de usuario, utilizado en con-
figuraciones avanzadas sobre Linux.

AF_CAN Redes de area de controlador, comudn en aplicaciones automotrices.

AF_BLUETOOTH Comunicacion inaldmbrica entre dispositivos Bluetooth.

AF_VSOCK Comunicacién entre maquinas virtuales, empleada en entornos virtualizados o
contenedores.
AF_TIPC Comunicacion distribuida en sistemas de alta disponibilidad.

CAPITULO 2. FUNDAMENTOS PARA LA DESCENTRALIZACION EN XR 14

2.4.3. Sockets Berkeley: Interfaz de programacién para comuni-

cacion en red

La interaccion entre estas capas del protocolo de comunicacion TCP/IP se realiza
programaticamente a través de interfaces conocidas como sockets Berkeley [65], un estandar
que proporciona una abstraccién unificada para la comunicaciéon entre procesos, ya sea
localmente o a través de la red. Desarrollado originalmente en la Universidad de California,
Berkeley, como parte de los sistemas BSD UNIX, este modelo se ha convertido en la base
de la programacion de redes en la mayoria de los sistemas operativos modernos.

Un socket se conceptualiza como un punto final abstracto para el envio y la recepcion
de datos, funcionando como un canal bidireccional de comunicaciéon entre dos usuarios.
Desde la perspectiva de un programador, un socket se comporta de manera similar a un
descriptor de archivo, permitiendo operaciones de lectura y escritura mediante llamadas al
sistema estandar. Cada socket se caracteriza por tres atributos fundamentales: el dominio
de la comunicacion (también llamado familia de direcciones, pudiendo ser alguna de las
listadas en la Tabla 2.1), el tipo de socket (que define el modelo de comunicacion TCP o
UDP), y el protocolo especifico a utilizar (ver Tabla 2.2).

Tabla 2.2 Tipos de socket y protocolos especificos en entornos XR

Tipo de socket Descripcion Protocolos comunes

SOCK_STREAM Orientado a la conexion. Proporciona
un flujo continuo y confiable de da-
tos. Ideal para sincronizacién precisa

y estados persistentes.

TCP (Transmission Control Protocol)

SOCK_SEQPACKET

SOCK_RDM

los de red subyacentes. Usado para
diagnéstico o implementacién perso-
nalizada de protocolos.

Similar a SOCK_STREAM, pero preser-
va los limites de los mensajes. Menos
comun en XR.

Proporciona mensajes confiables sin
conexion. Poco implementado en sis-
temas modernos.

SOCK_DGRAM Sin conexién. Envia datagramas in- UDP (User Datagram Protocol)
dependientes sin garantia de entrega
ni orden. Util para datos sensibles al
tiempo.

SOCK_RAW Permite acceso directo a protoco- [P, ICMP, protocolos definidos por el

usuario

SCTP (Stream Control Transmission
Protocol)

Protocolos experimentales o propie-
tarios

CAPITULO 2. FUNDAMENTOS PARA LA DESCENTRALIZACION EN XR 15

Existen dos tipos de sockets ampliamente utilizados: sockets TCP y sockets UDP. Los
sockets TCP (tipo SOCK_STREAM) proporcionan un flujo de datos continuo y confiable,
garantizando la entrega ordenada de los paquetes mediante retransmisiones automaticas.
Este modelo es anédlogo a una llamada telefonica: una vez establecida la conexion, los datos
fluyen secuencialmente hasta que alguna de las partes cierra la comunicaciéon. En cambio,
los sockets UDP (tipo SOCK_DGRAM) operan mediante datagramas independientes, donde
cada mensaje constituye una unidad de informaciéon auténoma sin garantias de entrega u
orden. Esta aproximacion se asemeja al servicio postal, donde cada carta viaja de forma
independiente y puede perderse o llegar en desorden.

2.5. Serializacién y formatos de mensajes

En la Seccién 2.4.1 se mencion6 que la capa de aplicacion se encarga de formatear los
datos a transmitir segin un esquema comun entre los dispositivos involucrados. Este proce-
so de convertir una estructura de datos, desde su formato presente en la memoria aleatoria,
en una secuencia lineal de bits, recibe el nombre de serializaciéon y es independiente del
equipo que lo genera [66]. Los objetos serializados pueden ser almacenados, transmitidos
y reconstruidos segiin sea necesario empleando su proceso inverso, la deserializacion.

Existen dos enfoques predominantes en este proceso: la serializacién binaria y la se-
rializacion en texto. En el primer enfoque los objetos se convierten en una secuencia de
bytes, esto los hace eficientes en términos de espacio y velocidad. Algunos de estos ejemplos
de serializacion son: MessagePack que usa codigos de “tipo” y “longitud” para represen-
tar datos més rapido y mas pequenos que JSON. Protocol Buffers que requiere compilar
previamente esquemas de tipo “proto” donde se define la estructura de datos que se desea
serializar. FlatBuffers que también requiere compilar previamente esquemas de tipo “tbs”,
pero que no requieren un proceso de deserializacion. Apache Avro que emplea esquemas
en formato JSON para especificar la estructura de datos a serializar, pero sin necesidad de
compilarla previamente al incluir dicho esquema de interpretacion dentro de la secuencia
de bytes.

En cambio, la serializaciéon en texto representa los datos en formatos legibles por hu-
manos, lo que facilita la inspeccién y edicién manual. Aunque suelen ser menos eficientes
en términos de tamano y velocidad, son ampliamente adoptados en aplicaciones web y
servicios interoperables. Los formatos méas comunes son: XML (lenguaje de marcado ex-
tensible) un lenguaje de marcado similar a HTML pero sin etiquetas integradas. JSON
un formato de serializacion de datos ampliamente extendido entre plataformas y lenguajes
para intercambiar estructuras del tipo “campo:valor” entre aplicaciones y servicios. YAML
un formato enfocado en la legibilidad humana que utiliza una sintaxis basada en la inden-
tacion para representar datos estructurados como listas, mapas o valores escalares, siendo
especialmente 1til en archivos de configuracion.

CAPITULO 2. FUNDAMENTOS PARA LA DESCENTRALIZACION EN XR 16

El proceso de la serializacion facilita hacer llamadas a otros procedimientos locales o
remotos, identificar cambios de datos en ejecucion, crear copias de informacion, anadir per-
sistencia a los datos o intercambiar objetos entre distintos programas. Sin embargo, su uso
también acarrea inconvenientes, por ejemplo, rompe la opacidad de los datos abstractos al
exponer atributos piiblicos y privados. Produce retrasos en la transmision y deserializacion
si no se garantiza una serializacién de objetos optimizada y en caso de serializar objetos
que tienen valores que apuntan a direcciones en memoria, al deserializar esta direccién no
necesariamente sera la deseada.

Aunque existen soluciones particulares que resuelven algunos de estos problemas como
la encriptacion, compresion u operaciones de referencias logicas a apuntadores de memoria
fisica (pointer swizzling, lazy swizzling, partial swizzling), el consumo adicional de recursos
para implementar alguno de estos procesos puede degradar la experiencia que hace uso
de la soluciéon. Por esta razon, ante estructuras mas complejas, se recomienda serializar
individualmente por campos y almacenarlos en un buffer previo a su envio, o bien, construir
paquetes de informacion.

2.6. Replicaciéon y consistencia de datos

La replicacion de estados se define como el proceso mediante el cuél se mantienen copias
sincronizadas del estado del mundo virtual a través de multiples usuarios. Esta consistencia
puede conseguirse bajo un enfoque de consistencia fuerte y eventual. En la consistencia
fuerte se garantiza que los estados se vean reflejados en el mismo instante temporal en el
que se realiza una actualizaciéon. En cambio, en un esquema de consistencia eventual se
permite que las réplicas diverjan temporalmente [67].

Un esquema tipico de solucion suele establecer un dispositivo en la red como la “fuen-
te de la verdad”, donde se alberga el estado global del mundo. Cada usuario adicional
mantiene una réplica local que se actualiza continuamente. Sin embargo, en un sistema
completamente descentralizado, el problema incrementa su complejidad a gran escala cuan-
do se busca que esa sincronizacion sea convergente, instantanea y robusta entre todos los
usuarios.

2.6.1. Mecanismos de control y unicidad

La mayoria de los algoritmos de consenso descritos en la literatura suelen requerir
un control respecto a cada nodo involucrado en el sistema. Esta supervision refuerza la
integridad y el caracter tnico de la informaciéon compartida, mediante tres mecanismos
comunmente empleados en este tipo de procesos: marcas de tiempo (timestamp), identifi-
cadores UUID y funciones criptograficas aplicadas a los datos [68].

CAPITULO 2. FUNDAMENTOS PARA LA DESCENTRALIZACION EN XR 17

Una marca de tiempo, entendida como una referencia cronolégica representada median-
te fecha y hora, permite establecer la secuencia de eventos ocurridos dentro de un proceso,
resolviendo ambigiliedades sobre la prioridad y el orden de ejecuciéon. Por su parte, los
UUIDs (Universally Unique Identifiers) son identificadores generados mediante algorit-
mos disenados para minimizar la probabilidad de colision, lo que permite referenciar de
forma inequivoca las entidades distribuidas en la arquitectura.

La operacion de hashing, también conocida como funcién hash, implica crear una huella
digital de la informacion con una extension predefinida, utilizada para detectar cambios e
inconsistencias entre paquetes transmitidos. Al aplicar funciones hash sobre el estado de los
paquetes, el sistema es capaz de identificar divergencias entre réplicas locales y el estado
canodnico, permitiendo tinicamente aquellas modificaciones que hayan sido sincronizadas
durante todo el proceso de la comunicacion.

2.7. Desafios técnicos en la colaboraciéon XR distribuida

En aplicaciones tradicionales, un retardo de varios cientos de milisegundos puede resul-
tar aceptable. Sin embargo, los entornos XR exigen latencias inferiores a los 100 milisegun-
dos para preservar la ilusion de presencia [69]. Esta exigencia se ve agravada por el jitter,
una fluctuacién temporal capaz de alterar la fluidez y consistencia de las interacciones
compartidas.

La pérdida de paquetes y la preservacion de su integridad anaden una capa técnica adi-
cional que complica la operacion del sistema, junto con aspectos vinculados a la privacidad,
la proteccion de datos y la capacidad de crecimiento del sistema [70].

2.7.1. Entornos de programacion XR y sus arquitecturas de co-
nectividad

La integracion de los principios abordados representa un reto técnico de alta com-
plejidad. Ante esta situacion, los motores contemporaneos de creaciéon de experiencias
interactivas han incorporado niveles de abstraccién que encapsulan los desafios de red y
de sincronizacién, facilitando que los desarrolladores se enfoquen en la construccién de
entornos inmersivos sin afectar la robustez operativa del sistema [71].

Un ejemplo de ello es Unity Engine [72], una plataforma de desarrollo ampliamente
utilizada para la creacion de experiencias multiusuario mediante estructuras jerarquicas
de abstraccion. Su sistema nativo de Networking (UNET, actualmente obsoleto) sent6 las
bases de la conectividad colaborativa, mientras que soluciones mas recientes como Netcode

CAPITULO 2. FUNDAMENTOS PARA LA DESCENTRALIZACION EN XR 18

for GameObjects (NGO) [18] ofrecen una estructura de programacion de alto nivel que
automatiza la replicaciéon de propiedades, la sincronizaciéon de escenas y el control de
sesiones multiusuario. Para desarrolladores que requieren arquitecturas personalizadas,
el middleware Photon Engine proporciona una red distribuida alojada remotamente [73],
dotada de herramientas como matchmaking automatico y replicacion de estado integradas.

Otro ejemplo es Unreal Engine |74], que aborda la conectividad multiusuario mediante
un sistema de replicacion embebido de forma nativa en su estructura interna. Mediante el
simple marcado de propiedades o mediante el uso de blueprints visuales, los desarrolladores
pueden indicar qué elementos deben sincronizarse automaticamente a través de la red. El
motor gestiona eficientemente la priorizacion de actualizaciones basandose en la relevancia
espacial, replicando primero los objetos més cercanos al jugador. Incluso, para casos de uso
empresarial y experiencias a gran escala, Unreal Engine ofrece integraciéon con servicios
como Epic Online Services, que proporciona matchmaking, logros, almacenamiento en la
nube y otras funcionalidades esenciales sin costos de licencia.

En el espacio open-source, Godot Engine [75] ha avanzado significativamente en ca-
pacidades de red con su sistema de High-Level Multiplayer API. Aunque requiere mas
configuracion manual que sus contrapartes comerciales, Godot Engine ofrece flexibilidad
para implementar arquitecturas personalizadas y sincronizaciéon de estados. Su naturaleza
abierta permite adaptaciones especificas para requisitos XR, como la optimizaciéon para
latencia ultrabaja o integracién con protocolos especializados.

Si bien estas plataformas constituyen la base tecnologica sobre la cual se construyen
experiencias XR colaborativas, su verdadero potencial se revela al analizar implementa-
ciones especificas que han logrado resolver los desafios de sincronizacion, escalabilidad y
coherencia en entornos distribuidos. El siguiente capitulo aborda estos casos, permitiendo
identificar patrones arquitectonicos efectivos y estrategias de diseno replicables.

Capitulo 3

Estado del arte

Este capitulo analiza el estado del arte en torno a los sistemas inmersivos colaborati-
vos, con énfasis en las distintas arquitecturas y modelos de implementacion descritos en la
literatura especializada. Posteriormente, se desarrolla un estudio comparativo de las dis-
tintas soluciones e implementaciones existentes, identificando las caracteristicas técnicas,
los mecanismos de sincronizacion, asi como las fortalezas y limitaciones a las que llegaron
distintos autores.

Distintos autores resaltaron tempranamente la importancia de las arquitecturas dis-
tribuidas para la creacion de experiencias compartidas |76, 77|. Algunos de los avances
han sido enfocados en definir marcos puramente conceptuales sobre como obtener dicha
colaboracion, como Schafer et al. [78] que definieron el entorno, los avatares y la inter-
accion como los tres componentes fundamentales bajo los cuales se deberfa implementar
la logica de una experiencia compartida. Mientras que Braud et al. [79] identificaron que
los sistemas operativos y las arquitecturas de software actuales carecen de las caracteris-
ticas necesarias para soportar las demandas especificas de la XR, por lo que propusieron
integrar soporte nativo de hardware, algoritmos de vision computacional y protocolos de
comunicacion hibridos como elementos primitivos de un sistema operativo al que llamaron
XROS, todo con la finalidad de simplificar el desarrollo de futuras aplicaciones.

Otros autores han optado por evaluar experimentalmente los sistemas distribuidos como
en el trabajo de Brown et al. [80], quienes presentaron un sistema de distribucion de datos
basado en eventos para el Battlefield Augmented Reality System (BARS), una experiencia
en RA disenada para mejorar la conciencia situacional y coordinacioén en entornos militares,
abordando desafios como conectividad de red poco confiable, ancho de banda limitado,

19

CAPITULO 3. ESTADO DEL ARTE 20

protocolos de transporte intercambiables y canales de comunicacion. Su trabajo se destaco
por ser uno de los primeros en emplear grupos multicast como mecanismo de difusion,
demostrando la flexibilidad para adaptarse a diferentes tipos de usuarios y aplicaciones,
tanto en RA moévil como sistemas de RV.

3.1. Arquitecturas centralizadas

Existen trabajos que han propuesto nuevas arquitecturas de colaboracion. Herskovitz
et al. [81] introdujeron capacidades valiosas para el reconocimiento espacial compartido en
aplicaciones de RA. Su diseno fue exclusivamente adaptado para ecosistemas de dispositi-
vos homogéneos.

Simiscuka et al. [82] disefiaron una arquitectura especificamente para abordar los desa-
fios de sincronizacion entre dispositivos fisicos en el ambito del Internet de las Cosas (IoT)
y entornos virtuales habilitados por la nube. Guo et al. [83] desarrollaron Blocks, una apli-
cacion movil inspirada en la herramienta Google Docs, que permite crear estructuras de
RA que persisten en el ambiente fisico, contrastando colaboraciéon colocalizada y remota.
Por su parte, los trabajos que sugieren nuevos marcos de colaboraciéon, como el de Pereira
et al. [84] y el de Kostov y Wolfartsberger [85], siguieron un enfoque cliente-servidor. En
su defecto, optaron por el uso de frameworks y tecnologias como Photon Engine, SPARQL
y Netcode for Gameobject [86].

Las nuevas tendencias se han dirigido hacia los entornos hibridos cloud-edge [87] o
sistemas totalmente basados en la nube [88], que ofrecen capacidades de procesamiento y
almacenamiento escalables. Pero cuyo rendimiento depende de conexiones a Internet de
gran ancho de banda, un requisito poco practico en escenarios colaborativos locales con
infraestructuras limitadas. Una variante interesante la realizaron Viola et al. [89], quie-
nes desarrollaron VR2Gather, un sistema de telepresencia que habilité una comunicacion
multiusuario en tiempo real mediante la transmisiéon de contenido volumétrico fotorealis-
ta, superando las limitaciones de enviar avatares (uno de los paquetes mas complejos de
informacion). O como el trabajo de Han et al. [90], quienes propusieron CoMIC (Colla-
borative Mobile Inmersive Computing), una infraestructura para aplicaciones inmersivas
geodistribuidas, cuyo aporte incluy6 el uso de redes 5G, renderizado remoto de contenido,
mapeo espacial compartido y mecanismos de seguridad y privacidad.

El avance tecnologico también ha favorecido la heterogeneidad de las experiencias. Los
estudios conceptuales de Numan y Steed [13|, junto con Sereno et al. [91], articularon
como las asimetrias tecnologicas se manifiestan bajo dos tipos distintos de colaboracion:
asimetria perceptiva, donde variaciones en la representacion sensorial genera experiencias
divergentes, y asimetria interactiva, que surge de disparidades de control e interaccion.
Brehault et al. [92] operacionalizan este marco descomponiendo las asimetrias en ocho
dimensiones medibles, proporcionando una matriz de evaluaciéon que conecta desajustes
tecnologicos con sus respectivas implicaciones colaborativas.

CAPITULO 3. ESTADO DEL ARTE 21

Sin embargo, contrario a la suposicion de que las configuraciones asimétricas podrian ser
perjudiciales en una experiencia colaborativa, es decir, que experiencias con el mismo tipo
de tecnologias y dispositivos presentan mejores resultados en una experiencia compartida,
Grandi et al. [93] aportaron evidencia empirica donde demuestran que la interaccion asimeé-
trica (heterogénea) entre RA y RV puede ser tan efectiva como configuraciones simétricas
(homogénea) del tipo RA-RA o RV-RV. En [10] también mostraron que configuraciones
asimétricas entre computadoras personales (PC) y RV incluso superaron configuraciones
simétricas en experiencia de usuario y rendimiento de tareas. Agnes et al. [94] encontraron
que mientras las configuraciones simétricas entre RV-RV generan maés ideas (favorecen la
creatividad), las asimétricas como emparejamientos PC-RV conducen a la delegacion de
tareas y comunicacion mas eficiente. Estos resultados han abierto nuevas oportunidades
para la creaciéon de marcos de desarrollo multiplataforma, tal como la propuesta de Huang
et al. |95] quienes presentaron SCAXR, una arquitectura disenada para realizar renderi-
zado bajo demanda aprovechando la heterogeneidad computacional entre los dispositivos
involucrados.

3.2. Soluciones descentralizadas

Investigaciones recientes también han explorado arquitecturas descentralizadas para
XR. Frey et al. [96] presentaron Solipsis, una de las primeras arquitecturas completamente
descentralizadas para entornos virtuales masivos, que fue disenada para superar los limi-
tes de escalabilidad de los sistemas centralizados tradicionales. Una propuesta basada en
tecnologias de Web descentralizada (DWeb) la realizo Huh et al. [97], quienes utilizaron la
base de datos descentralizada GunDB para sincronizar estados entre pares y un enfoque
“offline-first”, que permite a usuarios colaborar sin conexiéon estable. Bajo el mismo para-
digma WebXR, en [98] se desarroll6 una arquitectura XR descentralizada para entornos de
aprendizaje colaborativo basada en el concepto de tiempo virtual, transformando el mode-
lo Croquet, un modelo de computacién basado en eventos sincronizados entre pares [99],
en una aplicacion P2P llamada Luminary que permitié una sincronizacion sin servidores
intermediarios.

Norman et al. [100] propusieron una técnica interesante en la que se combinan dispo-
sitivos de RA y RV para crear un espacio colaborativo hibrido, donde cada participante
puede ver y manipular objetos virtuales desde su propia perspectiva mediante una in-
teraccion entre usuarios locales y remotos. Pereira et al. [101] presentaron ARENA, una
arquitectura XR distribuida basada en cloud—edge que facilita el desarrollo de aplicacio-
nes colaborativas multiusuario sobre navegadores Web, empleando un modelo de escena
publicador—subscriptor sincronizado. En estas arquitecturas, los dispositivos actian co-
mo emisores y receptores, demostrando ser viable en la sincronizaciéon de interacciones
heterogéneas, una propuesta que se consiguié de manera masiva con Decentraland [102],
un primer mundo virtual completamente descentralizado que emergi6 sobre la tecnologia
blockchain, gobernado por su comunidad mediante una Organizaciéon Auténoma Descen-
tralizada (DAO), ofreciendo un ecosistema donde usuarios poseen, crean y controlan sus

CAPITULO 3. ESTADO DEL ARTE 22

activos y experiencias digitales.

Con el crecimiento y popularidad del blockchain, los intentos por explorar oportuni-
dades de incursion con el metaverso se vieron reflejados. Ghosh et al. [103], al igual que
Jagatheesaperumal et al. [104], examinaron detalladamente la relacion entre blockchain,
la tecnologia Web 3.0 y la descentralizacion del metaverso, coincidiendo en que un en-
foque centralizado limitaria el control del usuario, expondria riesgos en la protecciéon de
datos y dificultaria la interoperabilidad entre plataformas. Con el proposito de revertir esta
tendencia a centralizar las experiencias XR, Huabing et al. [105] presentaron CRCDnet,
una red descentralizada para visualizacion distribuida sincronica en escenarios moéviles de
RA, construida sobre infraestructura Web y empleando blockchain como mecanismo de
indexacion para facilitar el intercambio seguro de contenido gréafico procesado y habilitar
comunicacion directa entre dispositivos (D2D, Device—to—Device). Asimismo, en una apli-
cacion orientada al ambito médico, Shreyansh et al. [106] propusieron una arquitectura
XR descentralizada para visualizacion colaborativa de datos tridimensionales, integran-
do un sistema criptografico biométrico hibrido, blockchain y almacenamiento distribuido
para preservar la confidencialidad de los datos y asegurar la conformidad con estandares
regulatorios.

Finalmente, Bhattacharya et al. [107] sostienen que la evolucion de los sistemas inmer-
sivos basados en realidad aumentada y virtual estara marcada por una transiciéon hacia
modelos descentralizados. Estos, impulsados por la convergencia de redes 6G y blockchain,
anticipan un ecosistema interoperable donde multiples plataformas compartan activos,
identidades y experiencias sin estar supervisadas por una infraestructura centralizada.

3.3. Vacios conceptuales identificados en la literatura

La revision critica de los trabajos existentes muestra un panorama fragmentado en la
evolucion de esquemas de colaboracion inmersiva en XR. Aunque se observa una tendencia
creciente hacia el diseno de experiencias compartidas, subsiste una separaciéon marcada en-
tre los enfoques centralizados predominantes y las propuestas descentralizadas emergentes.

A pesar de que las arquitecturas centralizadas adoptan ampliamente kits de desarrollo
de software comerciales como Unity Netcode y Photon Engine, asi como enfoques hibridos
cloud-edge que cubren las deficiencias en aspectos como la escalabilidad y la conectividad,
no se ha conseguido satisfacer las necesidades de colaboracion ubicua, siendo pocos los
trabajos enfocados en la creacion de nuevas arquitecturas. Ante esta oportunidad, se ex-
tiende la Tabla 3.1 como un resumen comparativo de las distintas soluciones aportadas a la
literatura por diversos autores, en el que la descentralizaciéon comienza a destacar como un
paradigma prometedor. Por ello proponer una nueva arquitectura que combine los mejores
aspectos identificados en cada solucién podria marcar los antecedentes de nuevos aportes
dentro del campo de la colaboracion XR.

CAPITULO 3. ESTADO DEL ARTE

Tabla 3.1 Resumen comparativo de articulos sobre colaboracion XR

Referencia Arquitectura Modalidad Dispositivos Interaccion

[22] Carlsson 1993 P2P RV PC, HMD Teclado, raton

[23] Zyda 1994 Distribuida RV PC, HMD Teclado, raton

[26] Ohshima 1998 Distribuida RA HMD Panel interactivo

[29] Dieter 2002 Distribuida RA HMD, PC Panel interactivo

[80] Brown 2004 Distribuida RA, RV HMD, PC Teclado, raton, HMD

[96] Frey 2008 P2P RV PC, smartphone Teclado, ratén

[108] Baillard 2017 Cliente-servidor RA, RM Tablet, HMD Tactil, gestos

[109] Dey 2017 Cliente-servidor RA, RV HMD Gestos, avatar

[110] Zhang 2018 Cloud-edge RA Smartphone Téactil

[82] Simiscuka 2019 Hibrida RV HMD, PC Tactil, gestos

[83] Anhong 2019 Cliente-servidor RA Smartphone, HMD Tactil, gestos, voz

[84] Pereira 2019 Cliente-servidor RA, RV HMD, smartphone Tactil, gestos

[97] Huh 2019 P2P RA, RV, RM Smartphone, PC, Té4ctil, mouse, gestos
HMD

[111] Sandor 2019 Cliente-servidor RA HMD Controladores

[34] Kaewrat 2020 Cliente-servidor RA Smartphone, PC Marcadores, tactil

[112] Zenati 2020 Cliente-servidor RA, RV Smartphones, HMD Tactil, gestual

[88] Mourtzis 2020 Cloud RA Smartphone, HMD Tactil

[113] Zhu 2020 Cliente-servidor RA Tablets Tactil

[101] Pereira 2021 Distribuida RA, RV Smartphone, HMD, Tactil, gestos, voz
PC

[98] Suslov 2021 P2P RA, RV PC, HMD Teclado, mouse

[33] Manuaba 2021 Cliente-servidor RA Smartphone TAactil

[101] Pereira 2021 Cloud-edge RA, RV, RM HMD, PC, Gestos, tactil
smartphone

[14] Lee 2021 Cliente-servidor RA, RM HMD, smartphone Gestos, tactil

[13] Numan 2022 Cliente-servidor RA, RV HMD, smartphone Gestos, tactil

[15] Tumler 2022 Cliente-servidor RA, RV, RM HMD, PC Gestos, tactil

[114] Porcino 2022 Cliente-servidor RA, RM HMD, PC, Gestos, tactil
smartphone

[85] Kostov 2022 Cliente-servidor RA, RV, RM HMD, PC, Controladores, teclado,
smartphone tactil

[86] Guo 2023 Cliente-servidor RM HMD Gestos, seguimiento

ocular
[89] Viola 2023 Hibrida RV HMD, smartphone Voz, movimiento fisico
[90] Han 2023 Cloud-edge RA, RV, RM HMD, smartphone Voz, gestos, seguimiento
fisico y ocular

[115] Huang 2023 Cloud-edge RA, RV HMD, smartphone Gestos, tactil

[95] Huang 2024 Cloud-edge RA, RV, RM HMD Gestos

[116] Neeli 2024 Cloud-edge RA, RM HMD, PC, Gestos, tactil
smartphone

[105] Zhang 2024 Descentralizada RA Smartphone TActil

[106] Sharma 2025 Descentralizada RA, RV Smartphone, HMD Téctil, gestos

[102] Decentraland Descentralizada RV PC Mouse, teclado

23

Capitulo 4

Arquitectura, Interfaces e
Implementaciéon

Este capitulo presenta el diseno sisteméatico de dos sistemas colaborativos con sus res-
pectivas interfaces de comunicacién. Primero se describe cada modulo de la arquitectura
centralizada. Posteriormente, se da espacio para describir el diseno de la arquitectura des-
centralizada. Finalmente, se presenta la interfaz comin del sistema con sus respectivas
mecanicas de operacion, coherencia espacial y multimodalidad.

4.1. Mecanica general

En esta investigacion, se ha adoptado una metodologia de experimentaciéon empirica.
La propuesta toma como referencia una aplicaciéon de dibujo espacial colaborativo, una
modalidad interactiva base entre las aplicaciones inmersivas de acuerdo a Close et al.
[117]. Esta aplicacion, ilustrada en la Figura 4.1, proporciona la capacidad de generar lineas
virtuales de distintas complejidades geométricas sobre un lienzo espacial compartido, con
el que se evalian métricas de desempeno como la latencia de transmision, la replicacion
y la calidad percibida por el usuario haciendo uso de dos arquitecturas de comunicacion
opuestas: una arquitectura centralizada y una arquitectura descentralizada.

24

CAPITULO 4. IMPLEMENTACION DEL SISTEMA 25

(A) L

.

Dibujos \
espaciales bl
——

. |
e

N - adiiarn

d) Dibujos espaciales
-~ Sketches

DO D
- £33

‘& Ay |

v R) inbul
a) Left controller ° ° b) Right controller Estilo defitrazo
Propiedades de trazo Accionador de eventos o0 O

—

Figura 4.1: Perspectiva de las dos interfaces de usuario en el escenario de dibujo espacial
colaborativo. (A) ilustra la disposicion espacial de ambos participantes, uno utilizando RA
movil y el otro utilizando RV, junto con sus respectivos trazos virtuales representados en
una escena virtual compartida. (B) muestra la interfaz API-VR, donde los usuarios dibujan
en un espacio 3D utilizando controladores 6DoF portatiles y ajustan las propiedades del
pincel a través de una paleta dentro del mundo virtual. (C) muestra la interfaz API-AR,
donde los usuarios dibujan mediante entradas téactiles en un smartphone compatible con

ARCore y personalizan los trazos utilizando una barra de herramientas superpuesta en
2D.

P

Para la implementacion, se desarrollaron cuatro prototipos. El primer prototipo co-
rresponde a una arquitectura centralizada. En este diseno, todos los trazos dibujados por
los clientes son enviados a un servidor central encargado de retransmitirlos a los demas
participantes. En contraste, el segundo prototipo corresponde a una arquitectura descen-
tralizada, disenada para distribuir la responsabilidad de la comunicacién entre los propios
participantes. Mientras que el tercer y cuarto prototipo corresponden a la aplicaciéon de
dibujo espacial, una orientada a funcionar con RA y la otra con RV respectivamente, que
integran a ambas arquitecturas de red desarrolladas para establecer el nticleo de la colabo-
racion y a efecto de su comparacion. A continuacién, en las secciones siguientes se detalla
el diseno de cada uno de los prototipos desarrollados.

CAPITULO 4. IMPLEMENTACION DEL SISTEMA 26

4.2. Diseno de la arquitectura centralizada

La arquitectura centralizada, de aqui en adelante referida bajo el acronimo SRV—-C,
fue disenada como un sistema de bloques interconectados para el manejo simultaneo de
sesiones colaborativas. Su disenio parte de la necesidad de tener el control total respecto
al ciclo de comunicacién, pudiendo desplegarse integramente en redes locales. Su modelo
operativo, resumido en la Figura 4.2, se compone por cinco bloques principales: (i) el bloque
de conexiones y desconexiones, (ii) la gestion de usuarios, (iii) el bloque de emparejamiento
o matchmaking, (iv) el manejador de serializacion y (v) el bloque de difusion (Broadcast).

SRV-C

API-AR API-VR

API de red

Interfaz aumentada Interfaz virtual

Controlador de Manejador de Conexiones y
entrada tactil serializacion desconexiones
TCP 2
Manejador de usuarios

Eventos

I\
J

Controles de

entrada

TCP

-

A 4

OpenXR

Manejador de

F Y

Anchors Eventos | Anchors

Broadcast

Nucleo de la app

/II
-

Nucleo de la app

Nucleo del servidor

Figura 4.2: Diagrama de composiciéon de la arquitectura centralizada SRV—C.

El nicleo del sistema, mismo que puede replicarse desde el repositorio publico en [118],
se rige por un modelo cliente-servidor. La comunicacion se realiza mediante sockets TCP,
implementados sobre una pila tecnologica basada en Node.js, TypeScript y las dependen-
cias descritas en la Tabla 4.1. La informacion de la sesiéon colaborativa se almacena en
memoria local empleando una estructura de datos, actualizada bajo demanda, para alma-
cenar el estado individual y el estado compartido de cada cliente conectado. Esto facilita el
acceso inmediato a la informacion relevante, sin incurrir en operaciones adicionales sobre
bases de datos, mismas que son totalmente opcionales en esta implementacion.

4.2.1. Conexiones y desconexiones

El bloque de conexiones y desconexiones gestiona la conexion, desconexion y reconexion
de cada dispositivo integrado en el sistema, asegurando que la colaboracién, permanencia
y eventual recuperacion se ejecute de manera mecéanica.

CAPITULO 4. IMPLEMENTACION DEL SISTEMA 27

Tabla 4.1 Dependencias utilizadas para el desarrollo del servidor con sus respectivos usos

Dependencia Version Descripcion

node 22.15.20 Entorno de ejecucién para JavaScript del lado del servidor. Se utiliza como base para eje-
cutar el servidor y manejar procesos en tiempo real.

crypto 10.0.0 Generador de Identificadores Unicos Universales (UUID). Se emplea para crear identifica-
dores Unicos en recursos como sesiones, usuarios, 0 mensajes dentro de la aplicacion.

protobufjs 753 Implementacion de Protocol Buffers en JavaScript. Permite la serializacion y deserializacion
eficiente de mensajes estructurados entre cliente y servidor.

protobufjs-cli 1.1.3 Interfaz para linea de comandos de protobuf js. Facilita la generacién de archivos JavaS-
cript y TypeScript de esquemas compatibles de Protocol Buffers.

ts-node 10.8.1 Ejecuta archivos TypeScript directamente en Node.js. Se usa para desarrollo rapido y ejecu-
cién sin compilacién previa, empleado para agilizar la evaluacion en entornos de pruebas.

typescript 5.8.3 Lenguaje de programacion que extiende JavaScript. Aporta robustez al proyecto, facilita el
mantenimiento del codigo, y previene errores comunes en tiempo de compilacion.

L J

En la fase de conexion inicial (cuando un dispositivo establece una conexiéon TCP con el
sistema), se identifica al dispositivo por medio de una huella digital generada al concatenar
la direccion IP del cliente, una marca de tiempo tomada al momento de la solicitud y su
respectivo socket de referencia. Esta cadena compuesta se somete a una funciéon hash
proporcionada por el modulo crypto de Node.js, cuya salida es un identificador tnico e
irrepetible, util para identificar a los distintos clientes.

Por ejemplo, si un cliente accede desde una red doméstica con la direccion IP 2.71.82.81,
el servidor anade a esta direccién una marca de tiempo generada al recibir la peticion y
otros elementos del entorno de conexion, obteniendo una cadena de datos con la estructura
“2.71.82.81-1070720251-socketRef”, que es procesada por el algoritmo de hashing para
producir un ID con el formato “48656c6¢6f21...”. Los primeros 8 elementos de este hash
son asignados al cliente y se convierte en su identificador persistente a lo largo de esa
sesion, transmitiéndose al cliente como parte del mensaje de bienvenida.

Para supervisar el estado de cada conexion, un mecanismo de latidos (heartbeat) rastrea
la capacidad de respuesta de los usuarios. Con este mecanismo, el servidor espera un
mensaje de latido de cada cliente en intervalos de 60 segundos (heartbeat_interval). Al
recibir cada latido o cualquier otra operacion realizada por el cliente, el servidor actualiza
internamente el registro de actividad del cliente, garantizando que el sistema tenga siempre
un estado preciso de la sesion. Si se acumulan tres intervalos consecutivos sin recibir
latidos desde un cliente (missedHeartbeats), el sistema lo marca como ausente y emite
una notificaciéon al resto de los usuarios de la sala, indicidndoles la posible desconexion, sin
limitar sus funciones dentro de la sesion. Esta operacion no implica la eliminacion definitiva
del cliente, sino que abre una ventana para su reconexion. Si dentro de los proximos 320
segundos posteriores a esta notificaciéon no se recibe una actualizacion por parte del cliente,
el sistema considera que la desconexion es definitiva, eliminando su registro de actividad,
liberando los recursos asociados al cliente y se actualiza la composicion de la sala.

CAPITULO 4. IMPLEMENTACION DEL SISTEMA 28

4.2.2. Gestidon de usuarios

El modulo de gestion de usuarios constituye el bloque encargado de representar, super-
visar y mantener actualizado el estado de cada cliente conectado en tiempo real, garanti-
zando la coherencia del entorno colaborativo y la integridad de las comunicaciones. Cada
usuario se abstrae mediante una estructura en memoria conforme a la interfaz IPlayer
ilustrada en la Tabla 4.2.

La estructura IPlayer incluye un campo id que almacena el identificador tinico del
cliente, generado por el servidor a partir de la funcion hash descrita en la seccion 4.2.1. El
campo conexion registra la referencia del socket asociado a la conexion TCP del cliente,
permitiendo intercambiar datos entre el servidor y el cliente sin otros intermediarios. El
atributo roomId almacena el identificador de la sala colaborativa en la que se encuentra
activo el usuario, mientras que el atributo lastSeen y lastActivity registran las marcas
temporales més recientes del tltimo latido recibido y de la tltima interaccion significativa
respectivamente, ambos utilizados para el calculo de latencia y deteccion de inactividad.

Tabla 4.2 Atributos y métodos publicos de la interfaz IP1layer

Atributo Descripcion
id Identificador Gnico del jugador.
conexion Socket activo que representa la conexion del jugador.
roomId Identificador de la sala en la que se encuentra el jugador.
lastSeen Marca temporal de la Gltima vez que el jugador fue detectado.
isConnected Estado de conexién actual del jugador.
lastActivity Fecha de la Gltima actividad registrada.
heartbeatInterval Intervalo de latidos para verificar la conexion.
missedHeartbeats Numero de latidos perdidos consecutivos.
buffer Cadena de datos en espera de procesamiento.
Método Descripcion
cleanup () Libera recursos y elimina referencias del jugador.
serializer() Devuelve el manejador de serializacién para el jugador.

J

El campo isConnected actiia como bandera logica para determinar si una conexion

esta activa y operativa, sincronizdndose con el atributo missedHeartbeats quien lleva el
conteo acumulado de latidos no recibidos, lo que permite enviar respuestas reactivas a la
pérdida de conexién y activar rutinas de recuperacion. Por su parte, el heartbeatInterval
guarda una referencia al temporizador asignado a cada cliente con la finalidad de registrar
la periodicidad de los latidos, mientras que buffer acttia como espacio temporal para la
serializacion y deserializacion de los datos.

También se definen dos métodos fundamentales como cleanup (), encargado de liberar
los datos asociados a un cliente cuando la conexion se cierra o expira, y serializer (), que

CAPITULO 4. IMPLEMENTACION DEL SISTEMA 29

expone la logica de serializacion especifica empleada por el cliente, permitiendo interpretar
adecuadamente los datos entrantes.

4.2.3. Matchmaking

El bloque de emparejamiento o matchmaking define y operacionaliza el concepto de
sala colaborativa como un elemento funcional del sistema. Una sala colaborativa se define
como un espacio légico acotado donde un grupo especifico de usuarios comparte en tiempo
real objetos, eventos y estados sincronizados. El sistema es capaz de gestionar hasta n
salas colaborativas, cada una con una capacidad maxima de m usuarios concurrentes en
espacios logicos aislados.

Matchmaking gestiona de forma automatizada la asignacion de nuevos clientes a salas
colaborativas existentes o, en su defecto, la creaciéon de nuevas salas de ser necesarias.
Esta asignacion se rige por un esquema secuencial de registro en memoria FIFO (First-
In, First-Out), donde las referencias de las conexiones se insertan ordenadamente en un
arreglo dinamico que representa a los usuarios de una sala. El primer cliente en ingresar
ocupa la posicion 0, y los siguientes clientes se anaden de manera secuencial conforme a su
orden de llegada. Cuando se requiere extraer informacion de los participantes, el sistema
accede a las posiciones del arreglo conforme fueron insertadas.

El servidor también almacena todas las salas activas, cada una de ellas con su respectivo
identificador y referencias a clientes, que consulta para verificar la disponibilidad de espacio
en alguna de ellas. El criterio principal de emparejamiento se basa en la disponibilidad
de las salas ya creadas: si una sala no ha alcanzado el niimero méximo m de usuarios
permitido, se vincula al nuevo jugador a dicha sala y se procede a activar los mecanismos
colaborativos correspondientes. En caso contrario, se crea una nueva sala colaborativa
y se coloca al cliente en espera como su primer miembro, manteniendola inactiva hasta
conseguir el niimero maximo m de usuarios.

El ntimero de usuarios m por sala es un parametro configurable previo a la inicializa-
cion del servidor. Este parametro permite modelar escenarios diversos: desde experiencias
uno a uno, hasta dinamicas multijugador. Cada sala colaborativa actiia como una unidad
encapsulada del entorno colaborativo global. Dentro de su logica se mantienen referencias
explicitas a los dispositivos conectados y a los objetos virtuales generados, como modelos
manipulables, trazos gréaficos o registros de interaccion.

4.2.4. Manejador de serializacién

Este bloque garantiza la comunicacion entre clientes heterogéneos. El manejador adop-
ta un mecanismo similar a [80] capaz de alternar dindmicamente entre distintos formatos
de serializaciéon en lugar de la capa de transporte, sin alterar la semantica del entorno

CAPITULO 4. IMPLEMENTACION DEL SISTEMA 30

colaborativo. Esta caracteristica se consigue con un diseno basado en interfaces, donde
cada modelo de serializaciéon, como JSON, MessagePack o Protobuf, se encapsula en una
clase comtun denominada SerializationHandler. La definicion de operaciones esenciales
como la codificacién y decodificacion automatizada se consigue con el uso de los identifica-
dores MIME (Multipurpose Internet Mail Extensions) correspondientes, que son etiquetas
estandarizadas que permiten al servidor reconocer y tratar adecuadamente cada mensaje
entrante o saliente segin los primeros caracteres recibidos en su formato.

El sistema, por practicidad, permite que la eleccion del serializador no sea una confi-
guracion global impuesta por el mismo servidor, sino una decisiéon contextual determinada
por los clientes. Esta decision puede interpretarse desde el mensaje inicial enviado por
el cliente o establecerse explicitamente como parte del protocolo de conexiéon. Esta so-
luciéon garantiza la interoperabilidad entre dispositivos que, por compatibilidad, recursos
o rendimiento computacional, requieren emplear distintos formatos. Por ejemplo, alguna
implementacion desarrollada con editores actuales de Unity Engine podrian hacer uso de
Protobuf para aprovechar su bajo costo computacional y capacidad de transmisiéon mas
eficiente [119], mientras que aplicaciones Web o clientes no compatibles pueden continuar
empleando el formato de serializacion JSON. La decision de desacoplar completamente el
formato de serializacion del ntcleo légico del servidor fortalece ademés su capacidad de
evoluciéon futura ante su posible incorporacién de nuevos formatos, ya sea por necesidad
técnica, avance tecnologico o integracion con plataformas externas.

Tabla 4.3 Atributos y métodos publicos de la clase Room

Atributo Descripcion

roomId Identificador Unico de la sala.

players Lista de usuarios conectados, representados mediante objetos del tipo IPlayer.

objects Estructura que contiene los elementos posicionados en el espacio, definidos por coor-
denadas del tipo Vector3.

drawings Trazos realizados por los participantes, también representados por el tipo de dato
Vector3

lastActivity Marca temporal de la Gltima actividad registrada en la sala.

Método Descripcion

broadcast(data: String)
addPlayer (player: IPlayer)
removePlayer ()
playerReconnected ()
playerDisconnected ()
isEmpty ()
getActivePlayers ()

Envia datos a todos los usuarios conectados.

Anade un nuevo participante a la sala.

Remueve un usuario identificado previamente de la sala.
Reestablece el estado de un usuario tras su reconexion.
Marca a un participante como desconectado.

Comprueba si no hay usuarios activos en la sala.
Devuelve el conjunto de usuarios actualmente conectados.

CAPITULO 4. IMPLEMENTACION DEL SISTEMA 31

4.2.5. Bloque de difusion

El bloque de difusion o broadcasting se encarga de propagar instantaneamente los
mensajes recibidos hacia el resto de los participantes que comparten una misma sesion. Su
funcién central, broadcast (), permite emitir mensajes a todos los integrantes activos de
una sala determinada, excluyendo al emisor inicial para reducir el trafico en la red local.

El método broadcast () forma parte de una abstraccion logica denominada Room (ver
Tabla 4.3), una entidad que describe la logica de cada sesion colaborativa. Al invocar-
se el método de difusion, el sistema transmite a cada usuario asociado a la misma sala
correspondiente la estructura y secuencia presentada en la seccion 4.2.3.

La difusion de eventos habilita el nicleo de la experiencia colaborativa: cada accion
significativa, como iniciar un trazo de dibujo, actualizar una posicion o senalar una entidad
compartida, es replicada por los demas participantes, reforzando la sensacién de interaccion
simultanea. Con cada evento de transmision, la marca de tiempo de actividad de la sala es
actualizada, lo cual alimenta el proceso de deteccion de inactividad. Si durante un periodo
prolongado no se registran eventos transmitidos ni interacciones entre participantes, el
sistema detecta la inactividad de la sala y también procede a desasignar los recursos
vinculados, optimizando el consumo de memoria y reduciendo la carga del sistema.

4.3. Diseno de la arquitectura descentralizada

La arquitectura descentralizada fue disenada con el objetivo de facilitar la interacciéon
punto a punto entre nodos distribuidos, prescindiendo de una infraestructura centralizada.
La solucién adopté un patréon de mensajeria pub/sub (publicador/suscriptor) similar al
sistema de Pereira et al. [101], pero implementado sobre la pila tecnologica de NetMQ,
una adaptacion completamente nativa en C-Sharp de ZeroMQ [120], donde los emisores
(publicadores) generan mensajes sin requerir conocimiento explicito de los receptores (sus-
criptores).

La comunicacién se organiza mediante topicos (topics), estructurando el flujo de datos
en canales tematicos diferenciados segiin su funciéon. Cada topic, se asigna a un canal es-
pecifico de comunicacion, por ejemplo, un topic para compartir trazos de dibujo y anclajes
espaciales, un segundo topic para compartir posiciéon u orientacion de los clientes, o un ter-
cer topic para presentarse ante el resto de nodos, asegurando que todos los nodos suscritos
a esos topicos reciban las actualizaciones pertinentes en tiempo real. Este enfoque también
permite la incorporacién dindmica de nuevos participantes y se elimina el concepto de
sala colaborativa: cualquier nodo que se conecte y se suscriba al topico correspondiente
comenzaré a recibir informacion sin necesidad de reconfigurar el resto de la red.

CAPITULO 4. IMPLEMENTACION DEL SISTEMA 32

4.3.1. Mecanismo de descubrimiento de nodos

Uno de los desafios iniciales a los que se enfrenta el diseno de esta arquitectura consiste
en la deteccion de los dispositivos activos que comparten la misma red. Al eliminar el uso
de un servidor central, cada nodo pierde el acceso a una fuente comun de informaciéon que,
en las arquitecturas centralizadas tradicionales, facilita la conexiéon entre los participantes.
En ausencia de este componente intermediario, se requiere un método alternativo que
permita a los dispositivos detectar de forma auténoma a sus pares activos.

Para resolver este problema, se desarroll6 el componente MulticastDiscovery, respon-
sable de realizar el descubrimiento de nodos basado en mensajes UDP como mecanismo
equivalente al empleado por Brown et al. [80]. A través de este mecanismo, los nodos de la
red envian anuncios a la direcciéon de multidifusion 224.0.0.1, una direcciéon IP reservada
para enviar paquetes de datos a todos los miembros de un grupo, en lugar de su envio a
cada receptor. Este canal funciona como espacio compartido comtun donde los nodos anun-
cian su presencia en la red. Al iniciar la aplicacién, cada nodo transmite periédicamente
un mensaje que incluye su direcciéon IP, el puerto de servicio y los tépicos donde publica.
La estructura de este mensaje se describe en la Tabla 4.4:

Tabla 4.4 Estructura del mensaje de descubrimiento enviado por cada nodo

Campo Descripcion

ip Direccion IP del dispositivo que expone servicios de publicacion en la red local.

nodeId Identificador Unico del nodo, utilizado para rastrear su disponibilidad y validar su reconocimiento por otros
nodos.

topics Lista de tépicos en los que el nodo publica informacién, correspondiente a su perspectiva del entorno.

4.3.2. Gestion de sockets y conexiones

Para asegurar la consistencia de la red, el médulo MulticastDiscovery implementa
un sistema de control de vida de los nodos. Cada anuncio recibido por UDP actualiza
el registro local de cada dispositivo identificado en la red, posteriormente actualiza una
marca de tiempo asociada al nodo que realiza la transmisiéon en su propia copia de parti-
cipantes activos. Si un nodo deja de enviar anuncios dentro de un intervalo preestablecido
(60 segundos), se considera inactivo y se elimina de la lista local, lo que desencadena la
desconexion de sus correspondientes suscripciones. Este mecanismo asegura que los dispo-
sitivos no intenten comunicarse con nodos que ya no se encuentran disponibles, reduciendo
asi errores y sobre carga a la red innecesaria. El mecanismo contempla los siguientes tres
tipos de desconexiones:

CAPITULO 4. IMPLEMENTACION DEL SISTEMA 33

e Por inactividad: Se gestiona mediante un sistema de tiempo de espera preestablecido.
Si un nodo contintia enviando mensajes dentro del intervalo, se actualiza su marca
de tiempo. En caso contrario, se elimina de la lista de nodos disponibles. Si poste-
riormente se reconecta, sus mensajes de anuncio permiten su reintegracion como un
nuevo nodo descubierto.

e Por el usuario: Ocurre cuando el participante decide abandonar la sesion.

e Forzada: Se produce por fallos criticos en la aplicaciéon, como errores logicos o sobre-
carga de recursos.

Por conveniencia, el sistema define un tépico principal denominado “ARDrawing”, al
cual todos los nodos estdn programados para suscribirse una vez inician la conexiéon. Un
segundo modulo identificado como CommunicationManager proporciona métodos para or-
questar la publicaciéon de mensajes en este canal empleando sockets TCP, asegurando que
los paquetes de datos que encapsulan los trazos y anclajes espaciales en estructuras seriali-
zadas lleguen integramente a cada nodo. Cada mensaje incluye el identificador del anclaje,
la secuencia de puntos del trazo, atributos visuales y coordenadas de referencia, como se
empled en la arquitectura centralizada en la Secciéon 4.2.4.

4.3.3. Flujo de operacion del sistema

El comportamiento de la arquitectura descentralizada se comprende mejor examinando
el ciclo de transmision de cada mensaje, desde la construcciéon hasta la replicacion en
todos los dispositivos participantes. Este proceso, ejemplificado en la Figura 4.3, se basa
en la interaccion coordinada de los tres modulos principales: DrawManager (encargado
de procesar eventos de interacciéon), CommunicationManager (encargado de orquestar la
transmision de los datos) y MulticastDiscovery (encargado de validar los nodos activos).

Cuando un usuario realiza un trazo, DrawManager construye y registra la nube de pun-
tos generada por la interaccion. Posteriormente, su sistema coordenado es ajustado para
garantizar su persistencia dentro del entorno. Una vez construido el mensaje, se serializa
en conjunto a su geometria, sus atributos visuales y su referencia espacial correspondiente.

El médulo CommunicationManager publica en su propio topico de dibujo este paquete
serializado mediante su socket de publicacién, cuyos nodos ya se encuentran suscritos y
actualizados por el moédulo MulticastDiscovery. Este componente gestiona la deteccion
de los dispositivos activos mediante mensajes periddicos de multidifusion a través de la
direccion estandar 224.0.0.1 y el puerto 2718, configuracion establecida para facilitar la
implementacion en el entorno de pruebas, con lo que se asegura distribuir la informaciéon
tnicamente a los participantes presentes en la misma sesion.

CAPITULO 4. IMPLEMENTACION DEL SISTEMA 34

| API-AR T API-VR |

1. DESCUBRIMIENTO

An%mcm POly | Distribucion
Multicast (UDP) | \ulticast (UDP)| Nuevo nodo

detectado

2. CONEXION

Conexion TCP

~ Pub/Sub
P Suscripcion
- "ARDrawing"
3. COLABORACION
Dibujar
>
Trazo .
Serializar
Mensaje
>
Publicar en Transmision
"ARDrawing"” " i i
rawing TCcP Procesamiento Reconstruccion

asincrono 'D
>
Renderizado
4. MANTENIMIENTO

Loop [30s] ..

Heartbeat
ubp | \Validacion

N

Figura 4.3: Diagrama de composicion de la arquitectura descentralizada SRV-D.

En el nodo suscriptor, el médulo CommunicationManager opera de forma asincrona,
procesando los mensajes recibidos a través de un hilo dedicado para su visualizacion.
ARDrawManager procesa estos mensajes, reconstruyendo el trazo en la escena del nodo
suscriptor. Como resultado, el usuario remoto observa la apariciéon progresiva del trazo
realizado, permitiendo una colaboracién continua entre todos los participantes.

4.4. Diseno del entorno interactivo API-AR

La plataforma API-AR, ilustrada en la subfigura (C) de la Figura 4.1, constituye el
entorno desde el cual se analiza el desempeno de ambas arquitecturas propuestas desde
una perspectiva aumentada. Desarrollada en Unity Engine 2022.3.55f1, motor de aplica-
ciones compatible con Google ARCore, esta integracion incluye extensiones que posibilitan
capacidades de realidad aumentada en dispositivos Android. Gracias a ello, multiples dis-

CAPITULO 4. IMPLEMENTACION DEL SISTEMA 35

positivos moviles certificados por el proveedor [43] pueden participar simultaneamente en
un entorno de anotacion espacial, donde se crean y editan objetos graficos tridimensionales
superpuestos en el mundo fisico.

El funcionamiento de API-AR se basa en la captacién constante del mundo fisico,
apoyandose en el seguimiento espacial, la deteccion de planos, la estimacion de luz y re-
construccion parcial del ambiente mediante cAmaras e informacién inercial. Sobre esta base
sensorial, la aplicacién superpone los elementos virtuales en el espacio real, permitiendo
interacciones naturales a través de la pantalla tactil. Su diseno cumple un doble propoésito:
por un lado, actiia como medio para la generacion de trazos tridimensionales anclados al
entorno, por otro, se establece como una plataforma de evaluacion sistematica para ambas
arquitecturas propuestas, permitiendo medir métricas como la latencia de propagacion de
los mensajes, la consistencia espacial entre los dispositivos y la robustez frente a fallos o
desconexiones temporales.

4.4.1. Diseno funcional

El diseno funcional de API-AR se organiza en cuatro subsistemas coordinados que
permiten su analisis y extension por separado:

1. Gestion de entrada gestual: Este modulo interpreta las interacciones realizadas a
través de la pantalla tactil del teléfono mévil. Con el uso del sistema EnhancedTouch
de Unity Engine, se capturan eventos como toques, deslizamientos y arrastres, los
cuales son procesados para generar trazos virtuales sobre el espacio aumentado. La
interpretacion de gestos permite reconocer secuencias espaciales y temporales que
definen acciones complejas, como iniciar, continuar o finalizar un dibujo.

2. Subsistema de generaciéon de trazos: Partiendo de las interacciones capturadas
en la entrada gestual, este subsistema crea lineas tridimensionales (ARLines), cada
una con un color, textura y tamano que son renderizados dindmicamente en la es-
cena de RA. Cada linea se construye con un conjunto finito y espaciado de puntos
espaciales, interpolados conforme su orden de creacion, para su visualizaciéon como
un elemento continuo e ininterrumpido, incluso si el dispositivo cambia de ubicacion
o reinicia su percepcion del entorno.

3. Sincronizacién espacial mediante anclajes: Un anclaje (anchor) en el contexto
de la RA es un punto de interés en el espacio que se emplea como referencia espacial
para posicionar objetos digitales [121]. Para ello, se hace uso de la odometria visual-
inercial de Google ARCore para detectar planos o superficies estables del entorno
y establecer sobre ellos anclajes persistentes. Estos anclajes se replican mediante la
transmision de sus metadatos asociados, consiguiendo una representacion coherente,
incluso si la percepcion espacial entre dispositivos difieren ligeramente.

CAPITULO 4. IMPLEMENTACION DEL SISTEMA 36

4. Capa de comunicacién y serializacion: Este subsistema se encarga de empa-
quetar la informacion generada (trazos, anclajes, eventos de sesién) en mensajes
estandarizados que son enviadas a través de la red. La aplicacion admite multiples
esquemas de codificacion, como JSON, MessagePack y Protobuf, seleccionables di-
namicamente segin el escenario de evaluacion.

Respecto al diseno visual e interactivo, la interfaz API-AR se organiza en los siguientes
dos componentes complementarios:

e Componente tridimensional: Esta capa constituye el nicleo de la experiencia
aumentada. Es aqui donde se proyectan, en tiempo real, los trazos dibujados, los
anclajes establecidos y las anotaciones compartidas.

e Componente bidimensional de control (UI canvas): Este componente super-
pone elementos graficos tradicionales como botones, ments, imagenes, y controles
visuales sobre el componente tridimensional. Su propésito es permitir el acceso in-
mediato a las funciones de edicion y configuraciéon de los trazos tridimensionales sin
interferir con el entorno aumentado.

4.4.2. Sincronizacién espacial mediante anclajes persistentes

La persistencia espacial de los objetos virtuales, entendida como la capacidad de los
objetos de mantenerse fijos en posiciones coherentes, se consigue empleando anclas (an-
chors), que son puntos de referencia tridimensionales sobre los cuales se posicionan los
elementos aumentados. Evitando el uso de servicios propietarios como Cloud Anchors de
Google (que requieren acceso a internet, permisos de localizacion y licencias de uso), se
disené un protocolo personalizado de sincronizacién usando un sistema de coordenadas
relativas.

La estrategia de sincronizaciéon implementada parte de la siguiente simplificacion: to-
dos los dispositivos inician su sesion colaborativa en una posiciéon fisica aproximadamente
coincidente, ilustrado en la subfigura (A) de la Figura 4.1. A partir de esta suposicion, en
cada dispositivo se define su propio sistema de referenciaciéon espacial, cuyo origen local
se define como (z,y,2) = (0,0,0), siendo este el lugar en el entorno real donde se inicia
la aplicacion. Si bien esta aproximacién presenta limitaciones en entornos muy amplios o
dispersos, resulta suficiente para sesiones controladas con usuarios colocalizados.

Cada anchor identificado tiene asociado una entidad légica compuesta por:

1. Un identificador tinico (UUID) generado localmente,

CAPITULO 4. IMPLEMENTACION DEL SISTEMA 37

2. Una posicion tridimensional relativa al dispositivo que procesa el anchor,

3. Y una orientaciéon espacial.

Cuando el anchor es creado, sus metadatos se replican en el resto de dispositivos
mediante un mensaje estructurado haciendo uso de alguna de las arquitecturas de red
desarrolladas. Empleando los identificadores persistentes de cada anchor, los clientes re-
construyen los metadatos recibidos desde su marco de referencia local, interpretandolo
como una posicion relativa al origen con el que iniciaron su sesion.

Este modelo de sincronizacion tiene dos ventajas principales. La primera ventaja es
que no se requiere el uso de mapas espaciales compartidos o reconstrucciones simultaneas
del entorno como el de Han et al. [90], lo que simplifica el procesamiento computacional y
reduce el trafico de datos. La segunda ventaja es que permite una evaluacion controlada de
las capacidades en ambas arquitecturas de red. Ademas, el sistema extiende su alcance y
resuelve otros desafios como oclusiones temporales, cambios de iluminacién o la captura y
procesamiento de datos visuales a través de Google ARCore. Cuando el sistema de percep-
cion del dispositivo pierde momentaneamente el seguimiento espacial, se recurre a anclajes
previamente establecidos por el dispositivo para estimar su transformaciéon espacial con
respecto a su estado anterior.

4.4.3. Generaciéon y transmision de trazos espaciales

La generacion de contenido grafico se basa en una gramatica gestual disenada especifica-
mente para interpretar las interacciones que suceden sobre la pantalla tactil del dispositivo.
Esta gramatica permite detectar eventos discretos (como toques iniciales) y movimientos
continuos (arrastres o deslizamientos), los cuales son proyectados como puntos tridimen-
sionales. Cada interaccion con la pantalla tactil da lugar a la creacién de un ARLine, un
contenedor de lineas tridimensionales sobre el entorno aumentado (ver Figura 4.4). Esta
linea es referenciada al anchor mas cercano dentro del entorno fisico, consiguiendo asi
mantener una posicion fija y coherente, incluso si el dispositivo que lo creé se desplaza o
pierde su seguimiento temporal.

Deteccion de evento Serializacion del evento

td N

°o® 00 9 ° o !_Nombre Tipo !
F'Y L. command String]

o 0® _id String !
.. 000 ﬁ ﬁ anchor pos Vector3 :
o00® anchor rot Quaternion |

® anlchor id gtring |

color tri]

o ring |

Transformacion a \Jine points Vector3[]_
un ARLine Estructura de datos

Figura 4.4: Proceso de generacion de trazos espaciales.

CAPITULO 4. IMPLEMENTACION DEL SISTEMA 38

Durante la interaccion, los puntos 2D capturados en pantalla son proyectados 60 centi-
metros sobre el espacio tridimensional mediante un rayo virtual que parte de la cAmara de
RA hacia el entorno fisico. Los puntos capturados se interpolan linealmente para producir
el efecto visual de un trazo continuo y sus propiedades como el color, grosor y opacidad se
gestionan a través de LineSettings, una estructura configurable a través del componente
bidimensional de control (UI canvas) descrito en la Seccion 4.4.1.

Finalizado un trazo (por ejemplo, al levantar el dedo de la pantalla), inicia la operacion
de serializacion. En esta etapa, los metadatos asociados al trazo se encapsulan bajo la
estructura denominada Drawings, conformada por los siguientes atributos:

Identificador tinico del usuario que genero el trazo.

Identificador de la sala colaborativa en la que se encuentra.

Identificador del anclaje al que esté vinculado el trazo.

Posicion espacial del anclaje en coordenadas relativas al sistema local.

Lista de puntos que definen la estructura espacial del trazo.

Propiedades visuales: color y grosor del trazo.

Esta estructura se serializa mediante el esquema JSON, MessagePack o Protobuf. La
eleccion del formato solo responde a criterios evaluativos.

4.4.4. Recepcidén, reconstrucciéon y animacioén de trazos remotos

Cuando se recibe un mensaje de dibujo generado por otro participante de la sesion
colaborativa, se inicia la operaciéon de reconstruccion local. En este procedimiento se extrae
del mensaje recibido el identificador tnico del anchor, su posicion relativa donde fue creado,
el conjunto de puntos espaciales que componen al trazo, asi como sus metadatos visuales.
A continuacién, se construye un nuevo anchor con las mismas propiedades compartidas
a través del mensaje, pero para su visualizacion se ejecuta una animaciéon progresiva que
distribuye el proceso de reconstruccion grafica a lo largo de varios cuadros de renderizado
(frames), dando la ilusion de ser reconstruido de manera natural y no instantaneamente.

4.5. Diseno del entorno interactivo API-VR

Ademas de su implementacién en dispositivos moéviles, el sistema global fue adaptado
para operar en entornos virtuales. Esta version, denominada API-VR, se disené con el

CAPITULO 4. IMPLEMENTACION DEL SISTEMA 39

objetivo de conservar los principios funcionales de la version en RA. Mientras que la
version en RA funciona en dispositivos moéviles compatibles con ARCore, API-VR estéa
pensada para plataformas que soportan interfaces XR, como OpenXR u Oculus SDK, por
lo que requiere el uso de equipos con visores y controladores para RV.

Esta aplicacion también se realizé empleando Unity Engine 2022.3.55f1, pero utilizando
el sistema XR Interaction Toolkit, una libreria de Unity disenada para facilitar la creacion
de entornos interactivos en RV. Este toolkit consigue detectar entradas desde controladores,
manejar colisiones espaciales, definir zonas de interaccion y vincular gestos fisicos con
acciones programadas.

API-VR también permite visualizar trazos construidos por otros participantes que usan
dispositivos moéviles o distintos controladores de RV, pero bajo un ambiente més controlado
respecto a API-AR, ya que se eliminan las condiciones fisicas como iluminaciéon, sombras
y oclusiones.

4.5.1. Loégica de interaccién

La interaccion en RV es radicalmente distinta a la de los dispositivos méviles basados
en pantalla téctil. Contrario a una interaccion multitoque (pulsaciones, deslizamientos o
pellizcos), el sistema en RV emplea un par de periféricos con seguimiento espacial, co-
munmente conocidos como mandos o controladores de RV. Estos controladores permiten
capturar simultdneamente la posicion z,y, z, asi como la orientacion (roll, pitch y yaw),
habilitando una interaccién mas exacta y precisa sobre los objetos virtuales.

Por ello, la mecénica de interaccion fue redisenada de tal manera que la manipulacion
de los objetos virtuales fuese mapeada a través de los botones fisicos del controlador. Cada
trazo se inicia al presionar el gatillo o “trigger” del controlador derecho (right controller),
mientras su visualizaciéon es representada mediante el componente TrailRenderer, un
componente nativo de Unity Engine con el que se generan estelas o trazos visuales.

TrailRenderer no solo visualiza la trayectoria generada, también almacena interna-
mente los puntos de la trayectoria que se ha seguido mientras el gatillo se mantiene presio-
nado. Una vez se deja de pulsar, se finaliza el trazo y se procede a su envio conforme a la
estructura empleada en API-AR. Es importante destacar que la estela generada se separa
inmediatamente del controlador tras completar el trazo, estableciendo su propia posicién
fija en el espacio virtual, de manera equivalente a las anclas generadas en API-AR.

CAPITULO 4. IMPLEMENTACION DEL SISTEMA 40

4.5.2. Loégica de sincronizaciéon espacial

API-AR y API-VR comparten un sistema comiin de coordenadas basado en anclas es-
paciales persistentes. Mientras que en el entorno de RA un ancla se asocia a una posicion
fisica, en RV estos anclajes se definen en un espacio virtual que emula la distribucion del
espacio fisico. La clave de esta coherencia espacial se consigue a través de una reinterpre-
tacion de los anclajes.

Cuando un usuario de la interfaz API-VR procesa la informaciéon de un trazo generado
en RA, la geometria del trazo se reconstruye en su ubicacion relativa incorporando, ademés,
una compensacion basada en un desfase de altura de aproximadamente 1.15 metros. Este
ajuste minimiza la diferencia entre el origen de ambos espacios coordenados, uno centrado
en la posicion inicial de la cdmara del dispositivo moévil, y el otro en la posicion inicial de

las gafas de RV.

Este desplazamiento permite que un trazo realizado sobre una superficie fisica se pro-
yecte coherentemente en el espacio virtual, evitando desalineaciones que comprometan la
percepcion compartida.

Capitulo 5

Pruebas y resultados

En este capitulo se describe el protocolo de pruebas realizado, los recursos disponibles
para evaluar ambas arquitecturas propuestas y se presentan los resultados obtenidos en el
proceso de evaluacion. Finalmente, se concluye con un analisis de rendimiento, asi como
los criterios de satisfaccion de los objetivos inicialmente propuestos.

5.1. Metodologia y validacién experimental

API-AR y API-VR no representan tinicamente una interfaz de usuario, sino que fungen
el rol de intermediarios para evaluar ambas arquitecturas de red desarrolladas. Ambas
aplicaciones incluyen las herramientas necesarias para dirigir un andlisis experimental a
través de dos dimensiones: el rendimiento del sistema (enfocado en comparar la latencia
de la comunicacion) y la consistencia colaborativa (enfocada en contrastar la fidelidad
de replicacion). Para ello, todas las pruebas realizadas se implementaron en un entorno
interior controlado, con iluminacion estable y obstrucciones fisicas minimas, con la finalidad
de garantizar un seguimiento espacial consistente y la reproducibilidad experimental en
escenarios similares.

El conjunto de pruebas se realizé entre dos usuarios: un teléfono inteligente (smartpho-
ne) compatible con ARCore y la aplicacion API-AR y un sistema de realidad virtual basa-
do en PC equipado con un controlador de 6 grados de libertad, compatible con la aplicacién
API-VR. Ambos dispositivos compartieron un espacio fisico de aproximadamente 3x3x3
metros, manteniendo una colocalizacion espacial durante todo el experimento.

41

CAPITULO 5. PRUEBAS Y RESULTADOS 42

Tabla 5.1 Especificaciones de los dispositivos utilizados en el banco de pruebas

Dispositivo Plataforma Entrada Descripcion
Smartphone (Disposi- Android 11 Pantalla tactil, Usuario API-AR ejecutdndose en Motorola
tivo A) seguimiento por ca- One Hyper.
mara
Visores de RV (Dispo- Windows 11 Controlador manual de Usuario API-VR ejecutandose en Oculus
sitivo B) 6DoF Rift y Alienware Aurora R7.
PC macOS 15.5 N/A Instancia del servidor SRV-C en Mac Studio
M2 Max.
\ y,

Al inicio de cada prueba, los dispositivos se colocaron uno junto al otro en un origen
espacial comun, con el dispositivo de RA adyacente al visor de RV. Esto aseguré que ambos
usuarios experimentaran el entorno colaborativo desde un punto de partida equivalente,
facilitando un anclaje espacial consistente y la alineacién de anotaciones entre las dos
plataformas.

La conectividad de red se establecié me-
diante una LAN usando un router ASUS
RT-AC5300 operando en la banda de 5
GHz, a una tasa de datos de hasta 1734

1.5{ %&u ::;ihizpuntos Mbps de acuerdo con las especificaciones
<14 A ’&* N proporcionadas por el fabricante para la in-
g 13 7@{»“: s ?‘s% terfaz 802.11ac. El router emitia multiples
% 12 _é ‘ I i ’ SSIDs, sin embargo, todos los dispositivos
S 11 o™ de prueba se conectaron exclusivamente a

un SSID dedicado. No hubo dispositivos

Dispositivo
Tl

—02 R ~1.00 adicionales conectados a la red especifica
3{ 810 Dispositivo . 5 ..
Aos, @ de pruebas durante las mediciones.
0@6 PR
06 075 48 La transmision de los paquetes se ma-

nejo exclusivamente mediante sockets TCP
persistentes. Para el caso de la arquitectu-
ra centralizada, se requiri6 una instancia
del servidor SRV-C en una maquina PC
(ver Tabla 5.1), mientras que, para la arqui-
tectura descentralizada, la comunicacion se
realiz6 entre los dispositivos, sin depender
de infraestructuras externas o en la nube.

Figura 5.1: Mapa de distribucién espacial
(distancias en metros). La nube de puntos in-
dica un ejemplo de las localizaciones de mues-
treo generadas (sketches) por ambos usua-
rios.

Los datos espaciales brutos capturados de la entrada del usuario (nube de puntos) se
procesaron utilizando la funciéon Vector3.Lerp de Unity Engine para realizar una inter-
polacion lineal entre los datos muestreados en cada evento. Este paso generé un trazo
continuo y uniforme, mejorando la suavidad y consistencia de la representacion visual de
cada trazo, transmitiéndose como un paquete de datos continuo para emular el dinamismo

CAPITULO 5. PRUEBAS Y RESULTADOS 43

de la entrada del usuario en tiempo real.

Bajo esta configuracion, los usuarios de RA y RV crearon colaborativamente anota-
ciones 3D que permanecieron ancladas en el espacio (sketches), como se visualiza en la
Figura 5.1, empleando ambas arquitecturas de manera separada para evaluar su capaci-
dad de respuesta bajo condiciones realistas de red y seguimiento.

5.1.1. Configuracién de los trazos

Para explorar un amplio rango de escenarios colaborativos, se definieron seis figuras
geométricas como plantillas de trazado, ilustradas en la Figura 5.2. Estas plantillas se
superpusieron visualmente en cada participante, sirviendo como guia dentro de un area
de dibujo de aproximadamente 25x25 centimetros. A cada participante se le indicoé que
replicara las figuras en el espacio 3D trazando secuencialmente los vértices de la plantilla
en la direccion indicada, adaptando el protocolo presentado en [122].

La evaluacion se realizé de forma bidireccional. Primero, el dispositivo de RA realizaba
las tareas de dibujo mientras que el dispositivo de RV realizaba la tarea de replicacion.
Después, los roles se invertian, siguiendo esta metodologia en ambas arquitecturas. Cada
figura se replicé 50 veces en ambos dispositivos, resultando en 300 pruebas por direccion de
transmision y un total de 600 eventos anotados para cada tipo de arquitectura evaluada.

(a) Linea (b) Triangulo c) Cuadrado
| / | { i | \’I
(d) Pentagono (e) Circulo (f) Espiral

@Q@

Figura 5.2: Seis figuras geométricas utilizadas como plantillas de trazado para probar
ambas arquitecturas desarrolladas. Las plantillas incluyen: (a) Linea, (b) Tridngulo, (c)
Cuadrado, (d) Pentagono, (e) Circulo, y (f) Espiral. Los participantes trazan estas figuras
en el espacio 3D, siguiendo la direccién indicada por las flechas, para replicarlas con pre-
cision. Los puntos azules representan el punto de inicio de cada trazo.

Si bien la plantilla visual estandarizé la ruta y el tamano del trazo, la velocidad de
dibujo estuvo sujeta a variaciones naturales entre los participantes. Aunque se hicieron
esfuerzos para fomentar un ritmo moderado y constante en el dibujo de los trazos, no

CAPITULO 5. PRUEBAS Y RESULTADOS 44

se impuso como una variable controlada. Dado que las principales métricas de interés
miden el tiempo de procesamiento del sistema por trazo (después de su finalizacion) y
no el rendimiento en tiempo real del envio punto por punto, se considera que el impacto
de la velocidad de dibujo en los resultados es minimo. A lo largo de todas las pruebas,
ambos dispositivos registraron marcas de tiempo detalladas para cada trazo, incluyendo:
el tiempo de transmision del mensaje al receptor, el tiempo de recepcion de la respuesta
de eco del servidor (para la arquitectura centralizada) o del dispositivo emparejado (para
la arquitectura descentralizada) y el tiempo de finalizacion de la reconstruccion del trazo.

5.1.2. Meétricas de evaluacion

Para abordar la desincronizacion de los relojes entre dispositivos, se implementé un
protocolo personalizado de eco de mensajes. Las mediciones de latencia se realizaron en
rondas de transmision alternas, donde solo un dispositivo actuaba como emisor por prueba.

En la arquitectura centralizada, al recibir un mensaje, el servidor SRV-C lo retransmitia
inmediatamente a todos los participantes, incluido el emisor original. El emisor registraba
tanto las marcas de tiempo de transmisiéon como de recepcién del eco usando su propio reloj
local, mientras que el receptor registraba de forma independiente las marcas de tiempo de
recepcion y reconstruccion dentro de su propio dominio de tiempo. Por el contrario, en
la arquitectura descentralizada, cada publicador transmitia el mensaje completo hacia un
topico especifico, registrando los instantes de tiempo de transmision como de recepcion
del eco enviado por el suscriptor, ambos usando su propio reloj local. De esta manera, el
emisor mide el tiempo de respuesta en la red, mientras que el receptor mide el tiempo de
replicacion y reconstruccion de mensajes.

Tabla 5.2 Registros de tiempo reportados por el emisor y el receptor

Emisor
t_1 Previo al envio de un mensaje desde el emisor.
t_2 Al recibir el mensaje de eco desde el receptor.
t_3 Después de la reconstruccion local del anclaje compartido.
Receptor
t_4 Al recibir el mensaje del trazo transmitido por el emisor.
t_5 Después de completar el renderizado visual y la reconstruccién del anclaje del trazo recibido.
\. J

Dentro de ambas arquitecturas, cada trazo transmitido preserva su identificador de
mensaje unico en toda la retransmisién. Durante el postprocesamiento, estos identificadores
se utilizaron para emparejar los eventos correspondientes en los registros del emisor y del
receptor, permitiendo una alineaciéon espacial coherente.

CAPITULO 5. PRUEBAS Y RESULTADOS 45

Este diseno aseguré que todas las métricas de latencia se derivaran de dominios de
reloj internamente consistentes, eliminando imprecisiones debidas a desviaciones o desfases
espaciales y temporales. En la Tabla 5.2 se presentan los registros de tiempo obtenidos por
los dispositivos involucrados por cada trazo transmitido:

()
Partiendo de estas mediciones, se calcularon las siguientes métricas por cada prueba realizada:

- Numero de puntos espaciales: P, requeridos para replicar un trazo.

» Tiempo de respuesta desde el emisor: At, = ¢, —t1, para evaluar el ciclo de transmisién.

 Latencia de replicacion: At, = t5 — t4, que aisla el retardo desde la recepcién hasta la
replicacion visual.

 Velocidad de recreacion: A¢,./P,, en puntos por segundo.

5.2. Resultados experimentales

El conjunto de resultados se analiz6 mediante estadistica descriptiva (media, valor
minimo, valor maximo y desviacion estandar). El andlisis se centra en caracterizar el
tiempo de respuesta del sistema y la sobrecarga de procesamiento, evaluando la capacidad
de ambas arquitecturas de red (SRV-C y SRV-D) para soportar colaboracion en tiempo
real.

5.2.1. Latencia del sistema

Las Tablas 5.3 y 5.4 reportan los resultados en la transmision At, de ambas arqui-
tecturas bajo seis tipos de pruebas realizadas, categorizadas por dos dispositivos y las
figuras de prueba especificas. El Dispositivo A corresponde a un smartphone con Android
11 (Motorola One Hyper), equipado con un procesador Qualcomm Snapdragon 675, 4 GB
de RAM y una pantalla FHD+ de 6.5 pulgadas, utilizado para las interacciones API-AR.
El Dispositivo B, correspondiente a la configuracion de un visor de realidad virtual Ocu-
lus Rift, fue conectado a un equipo de escritorio Alienware Aurora R7 con un CPU Intel
Core i7-8700, 16 GB de RAM y una GPU NVIDIA GTX 1080, utilizado para las tareas
API-VR.

En la arquitectura centralizada, los resultados revelan una disparidad fundamental
de rendimiento entre las dos plataformas de hardware. El Dispositivo A exhibié no solo
latencias promedio mas altas, sino también una variabilidad significativamente mayor,
como lo indican sus grandes desviaciones estandar (o: 80.63 ms y 91.38 ms) y amplios
rangos entre el valor minimo y maximo de latencia registrado para todas las figuras. Por

CAPITULO 5. PRUEBAS Y RESULTADOS 46

ejemplo, para la prueba Pr;,.., la latencia en el Dispositivo A varioé entre 28 ms y 266
ms, mientras que para la prueba Pggpirq, la latencia varié entre 29 ms y 472 ms. Este
patréon sugiere una volatilidad en el dispositivo moévil, probablemente debida a procesos
del sistema operativo que se realizan en segundo plano, limitacién térmica o asignaciéon
variable de recursos.

Tabla 5.3 Latencia de transmision promedio de la arquitectura centralizada

Dispositivo Prueba Z (ms) min (Mms) maz (Ms) o (ms) Peso (kB)

Prinea 137.33 28 266 89.25 1.23
Prrianguio 139.90 25 352 87.30 2.89

A Pcuadrado 160.96 31 354 81.53 3.19
Ppentagono 163.30 30 431 88.65 3.24
Pcircuio 169.50 31 333 80.63 3.29
Pgspiral 127.11 29 472 91.38 5.09
PlLinea 57.71 10 124 37.85 1.84
Priianguo 73.20 11 189 40.95 4.61

B Pouadrado 63.51 10 178 40.44 3.95
Ppentagono 69.57 11 165 41.04 4.49
Ptircuto 80.45 11 321 53.33 6.72
Propiral 90.16 23 234 57.87 11.07

\ J

Asi mismo, se observa una relacion entre la geometria de las figuras y la latencia
promedio en el Dispositivo A, donde algunas figuras geométricas como la Linea (137.33
ms) y el Tridngulo (139.90 ms) presentan menores tiempos de respuesta comparado con
figuras como el Circulo (169.50 ms) y el Pentagono (163.30 ms). Una excepcion sucede
con la Espiral (127.11 ms), que a pesar de tener el mayor tamano de datos (5.09 Kb),
registro la latencia promedio menor.

Por el contrario, el Dispositivo B demostré latencias consistentemente mas bajas y
estables. Sus desviaciones estandar fueron sustancialmente menores (entre 37.85 ms y 57.87
ms), y los rangos minimo-maximo fueron mas estrechos en todas las figuras, lo que indica
una mejor respuesta debido a la configuracion de hardware mas potente. Este rendimiento
puede visualizarse en la Figura 5.3, donde se contrasta la dispersion y medianas de ambos
dispositivos.

En cambio, en la arquitectura descentralizada, se presenta una respuesta diferente
entre ambos dispositivos. Para el Dispositivo A, se observa una mejora significativa en
el rendimiento, con reducciones de latencia que superan el 75% en comparacion con la
arquitectura centralizada. Las latencias promedio se mantienen en un rango notablemente

CAPITULO 5. PRUEBAS Y RESULTADOS 47

4 A
Dispositivo

. A T

400 — NN B

w
o
o

200

Latencia (ms)

100

Linea Triangulo Cuadrado Pentagono Circulo Espiral

Figura geométrica

Figura 5.3: Boxplot de la latencia total del sistema para cada uno de los seis tipos de
pruebas realizadas. El Dispositivo A corresponde a un smartphone Motorola One Hyper
(cliente API-AR), mientras que el Dispositivo B designa un visor Oculus Rift conectado
a un Alienware Aurora R7 (cliente API-VR).

estrecho (36.54 ms - 40.60 ms), con una variabilidad reducida significativamente (o: 8.52-
14.82 ms). Esta consistencia sugiere que la arquitectura descentralizada mitiga las fuentes
de variabilidad presentes en la plataforma moévil.

La relaciéon entre complejidad de figuras y latencia practicamente desaparece en el Dis-
positivo A bajo la arquitectura descentralizada, indicando que el procesamiento distribuido
minimiza los problemas de rendimiento asociados con figuras mas complejas. Asi mismo,
el tamano de los datos transmitidos muestra una reduccién general en comparacion con la
arquitectura centralizada, mejorando adicionalmente el rendimiento de la red.

No obstante, para el Dispositivo B, los resultados presentan un comportamiento con-
traintuitivo. Las latencias promedio (76.20 ms - 97.55 ms) son consistentemente superiores
a las observadas en la arquitectura centralizada para el mismo dispositivo. Este fenomeno
sugiere una saturaciéon por el proceso de coordinaciéon en la arquitectura descentralizada,
aunque la variabilidad se mantiene en rangos similares a la arquitectura centralizada.

CAPITULO 5. PRUEBAS Y RESULTADOS 48

Tabla 5.4 Latencia de transmisiéon promedio de la arquitectura descentralizada

Dispositivo Prueba Z (ms) min (Mms) maz (Ms) o (ms) Peso (kB)
Prinea 36.54 29 64 8.52 1.07
Prriangulo 38.56 24 70 11.64 2.32
A Pouadrado — 39.75 28 99 14.82 2.47
Ppentagono 40.60 27 69 12.64 2.30
Peoirculo 40.32 28 68 11.41 2.35
PEgspiral 38.47 26 72 11.92 3.76
PrLinea 89.18 12 146 35.08 1.04
Prrionguo 87.21 22 145 31.04 2.60
B Pouadrado 97.55 22 153 30.15 2.92
Ppentagono 87.49 12 138 30.64 2.1
Pcirculo 76.20 19 123 28.42 1.98
Propiral 82.02 30 124 24.68 3.14
. J

5.2.2. Latencia de replicacion

Las Tablas 5.5 y 5.6 presentan la latencia de replicacion At,, que captura el retardo
en el lado del usuario desde la recepciéon del mensaje hasta la finalizacion del renderizado
visual. Esta métrica refleja la sobrecarga de procesamiento local una vez se completa la
transmision de datos, utilizando los mismos dos dispositivos descritos en la Seccion 5.2.1.

En la arquitectura centralizada, el Dispositivo B demostré6 un rendimiento inferior
en la latencia de replicacion. Presenté latencias de replicacion mas altas en todas las
figuras de prueba con promedios entre 9.77 ms y 11.23 ms, comparados con los valores
registrados por el Dispositivo A, cuyos promedios oscilaban entre 1.94 ms y 3.50 ms.
Sin embargo, el Dispositivo B mostré una estabilidad mas notable, como lo evidencian
las bajas desviaciones estandar registradas (o: 2.18-3.64 ms) y rangos minimo-maximo
mas estrechos que el Dispositivo A, lo que sugiere que, si bien el dispositivo mévil puede
renderizar trazos muy rapido, es susceptible a retardos de procesamiento impredecibles,
probablemente debido a la contenciéon de recursos en el sistema Android, contrario al
Dispositivo B que muestra un rendimiento mas equilibrado.

En cambio, la implementacion descentralizada demuestra mejoras significativas, parti-
cularmente en el Dispositivo B, donde se observa una reducciéon en las latencias de repli-
cacion. Los valores descienden a rangos extraordinariamente bajos, con miltiples figuras

CAPITULO 5. PRUEBAS Y RESULTADOS 49

(Triangulo, Cuadrado, Pentagono, Espiral) registrando latencias de replicacion prome-
dio de 1 ms y desviaciones estdndar practicamente nulas.

Tabla 5.5 Latencia de replicacion promedio de la arquitectura centralizada

Dispositivo Prueba Z (ms) min (Mms) maxz (Ms) o (ms) N°depuntos

PrLinea 1.94 0 76 9.85 14.01
Prriangulo 3.50 0 49 10.29 36.64

A Pouwadrado 2.21 0 76 10.18 41.60
Ppentagono 1.09 0 15 2.50 41.51
Pcirculo 3.07 0 62 11.56 42.49
Pgspiral 1.68 0 35 5.10 67.40
Prinea 11.23 5 21 3.01 22.33
Prriangulo 10.94 5 16 2.58 60.97

B Pouadrado 10.89 3 19 2.90 51.82
Ppentagono 10.73 6 18 2.18 59.38
Pcireulo 9.77 2 21 3.64 90.55
Propiral 10.44 3 19 3.07 152.05

- J

Tabla 5.6 Latencia de replicacion promedio de la arquitectura descentralizada

Dispositivo Prueba T (ms) min (ms) max (Ms) o (ms) N°de puntos
Prinea 2.23 0 48 719 11.73
Prriangulo 3.87 0 85 14.25 28.87

A Pcwadrado 1.98 0 55 714 31.18
Ppentagono 1.01 0 24 3.07 28.70
Pcireulo 0.60 0 9 1.24 29.36
Piapiral 2.72 0 82 12.00 48.57
Prinea 0.016 0 1 0.13 11.18
Prrianguto 0.00 0 0 0.00 32.32
B Pcouadrado 0.00 0 0 0.00 36.63
Ppentagono 0.00 0 0 0.00 25.74
Pcirculo 0.037 0 2 0.27 23.79
Pgspiral 0.00 0 0 0.00 39.67

CAPITULO 5. PRUEBAS Y RESULTADOS 50

Para el Dispositivo A, la arquitectura descentralizada mantiene latencias promedio
similares a la configuracion centralizada (0.60-3.87 ms), pero con una reduccién general
en su variaciéon. Figuras como el Circulo muestran una mejora particularmente notable,
con una latencia promedio de 0.60 ms y desviacién estandar de solo 1.24 ms, comparado
con 3.07 ms y 11.56 ms respectivamente en la arquitectura centralizada.

Cabe destacar que la relacion entre la complejidad de la figura (tamano del mensaje y
namero de puntos) y la latencia de replicacion es débil para ambos dispositivos, como se
muestra en la Figura 5.4. El Dispositivo B mantiene latencias estables a pesar del aumento
en el nimero de puntos, tanto en la arquitectura centralizada como descentralizada, mien-
tras que el Dispositivo A no muestra un comportamiento homogéneo entre la complejidad
y la latencia promedio. Sin embargo, todas las latencias de replicacion medidas se mantu-
vieron muy por debajo de los 15 ms en promedio, valor imperceptible para una operacion
de retroalimentacion visual.

De acuerdo a los resultados de ambas arquitecturas, la descentralizacion revela una
dependencia de la plataforma objetivo. Para las pruebas con dispositivos moviles (Disposi-
tivo A), la arquitectura descentralizada provee mejores resultados en reduccion de latencia.
En cambio, para la configuracién del Dispositivo B, la arquitectura centralizada asegura
un mejor desempeno relacionado por el poder computacional del equipo y su optimizacion
para los estandares de comunicacion utilizados.

Respecto al analisis entre el tamano de datos y su relacion con la latencia se demuestra
que la arquitectura descentralizada separa efectivamente estos parametros en el dispositivo
movil, mientras que en la arquitectura centralizada atn se mantienen relacionados.

La comparacion también revela que la descentralizacién proporciona mejores beneficios
asimétricos. Para el Dispositivo B, la mejora es cuantitativamente superior, con reduccio-
nes de hasta el 70 % en latencia para la gran mayoria de las pruebas, resultado que permite
presentar a la arquitectura descentralizada como una solucién mas adecuada para la re-
duccién de los tiempos de procesamiento y la transmision de mensajes, a pesar de que para
el Dispositivo A las mejoras fueron mas sutiles.

Finalmente, los tiempos de replicaciéon medidos se mantuvieron muy por debajo del
umbral de la percepciéon humana, confirmando la capacidad de ambas arquitecturas para
proporcionar una retroalimentacion visual instantanea. No obstante, la superior consis-
tencia de la arquitectura descentralizada, principalmente en los resultados del Dispositivo
B, sugiere una experiencia de usuario mas fluida y predecible, libre de los microretardos
ocasionales observados en la configuracion centralizada.

CAPITULO 5. PRUEBAS Y RESULTADOS 51

Tamanfo del mensaje vs Latencia Puntos enviados vs latencia
é o Prueba) 4 o Prueba h
5 O Linea 5 O Linea
400 o Triangulo 400 o Triangulo
Cuadrado Cuadrado
© o Pentagono ° o Pentagono
o . [e] .
o o Circulo o o Circulo
« 300 o Espiral « 300 o Espiral
E E
© ©
[S] [&]
& 5
§ 200 E 200
Dispositivo A Dispositivo A
"""""""""""""""""""" Dispositivo B| L T T T T T M hispositivo B
@ o o @ o 1)
(o} o
100 100
[e] o}
o} (o]
[o]e] (o] [e]e] (e}
0 J 0 4
2000 4000 6000 8000 10000 12000 14000 16000 25 50 75 100 125 150 175 200
Tamaro del mensaje (bytes) Puntos enviados
(a) Arquitectura centralizada
Tamario del mensaje vs Latencia Puntos enviados vs latencia
4 Prueba h d Prueba R
o Linea O Linea
o Triangulo o Triangulo
400 Cuadrado 400 Cuadrado
o Pentagono o Pentagono
o Circulo o Circulo
» 300 o Espiral @ 300 o Espiral
E E
© ©
[&] [&]
5 &
+ 200 % 200
- 1
00 o [olpe}
5% 80 o Bos By S
100 10016 © o838 B8 Be2e0 B 0°
o 0 ® 000 000, o8B~ 000%80 o Dispositivo B
o 00Q0 880-53,0000 o° 770 0 8% o
= = 'O"""O'égog'o '868“0660"0"'0 "Q """""""
Wisposm_voA oilis o 88@@5! 885505 O, @OBOSS§§O%?§§08,.HVO B
0 4 0 8o o b
1000 1500 2000 2500 3000 3500 4000 4500 10 20 30 40 50 60
Tamano del mensaje (bytes) Puntos enviados

(b) Arquitectura descentralizada

Figura 5.4: Comparacion de latencias entre las distintas figuras geométricas bajo diferentes
tamanos de mensaje y densidades de puntos. En (a) se visualizan los resultados obtenidos
bajo la arquitectura centralizada, mientras que (b) presenta los correspondientes a la ar-
quitectura descentralizada. En ambos casos, se anadi6 una linea divisoria aproximada que
clasifica los resultados obtenidos de los dos dispositivos.

Capitulo 6

Conclusiones generales y perspectivas

Este capitulo presenta las conclusiones generales de la investigacion. Se aborda la con-
tribucion que se realiza a la literatura y se finaliza con la discusion sobre investigaciones
y trabajos futuros.

En esta tesis se presentd una comparativa entre el sistema SRV-C, una arquitectura
centralizada y SRV-D, una arquitectura descentralizada para colaboracién en tiempo real
y colocalizada entre experiencias virtuales y aumentadas. Ambos sistemas fueron disenados
para operar completamente sobre redes locales sin depender de infraestructura propietaria.
El sistema integré un mecanismo de sincronizacién, un protocolo de comunicaciéon inde-
pendiente de la serializacion y APIs especificas para RA movil y RV a escala habitacion. La
evaluacion experimental de latencia de transmision y replicacion confirméd que la colabo-
racion, haciendo uso de arquitecturas centralizadas, puede ser suficiente para experiencias
simples que requieren una consistencia espacial entre dispositivos heterogéneos, sobre todo
en aquellas actividades que requieren cargas de trabajo minimas o moderadas.

Un hallazgo interesante en este anélisis fue que los recursos de hardware si impac-
tan significativamente el comportamiento del sistema. Los resultados revelaron una clara
asimetria: la configuracion de RV (Dispositivo B), quién present6 una capacidad de proce-
samiento superior, ofrecié una latencia del sistema consistentemente menor y mas estable,
totalmente opuesta a los resultados obtenidos desde el dispositivo de RA movil (Disposi-
tivo A), quien exhibi6 mayor volatilidad a pesar de lograr menores tiempos promedio de
replicacion. Esto abre nuevas oportunidades de estudio donde se pueda experimentar con
equipos de iguales capacidades de procesamiento, en lugar de intentar igualar o equiparar
las capacidades heterogéneas de los dispositivos, siendo interesante cuestionarse el grado
de relevancia que presenta la heterogeneidad en este tipo de experiencias.

52

CAPITULO 6. CONCLUSIONES GENERALES Y PERSPECTIVAS 53

Asi mismo, los resultados globales refuerzan la capacidad de las configuraciones des-
centralizadas para satisfacer las necesidades de colaboracion en XR. Ademés, validan el
principio de diseno de adoptar la asimetria interactiva, permitiendo una participacion di-
ferenciada por dispositivo segiin sus capacidades técnicas, guiando nuestra hipdtesis de
que la descentralizacion es més que viable para la generacion de nuevas experiencias XR
compartidas.

Respecto a nuestros objetivos planteados inicialmente, se consiguié el diseno y eva-
luacion satisfactoria de un entorno distribuido con soporte multimodal y diversidad de
dispositivos, lo cual plantea nuevas lineas de exploracién técnica. En trabajos futuros,
se pretende atender las restricciones operativas identificadas en esta investigacion. Como
primer paso, se implementaran estrategias de sincronizaciéon dindmica, por ejemplo, colas
de eventos priorizadas en funcién del tépico en donde se publique, modular la frecuencia
de emisiéon de mensajes para evitar una saturacion de la red y dar soporte a grupos de
usuarios mas grandes a través de implementaciones Web y de blockchain, con las que se
permita diversificar geograficamente la experiencia. Asi mismo, se realizaran estudios con
distintos tipos de interaccion y se exploraran soluciones de transmision de mensajes par-
ciales, sustituyendo el envio de paquetes integros por fragmentos parciales, sin incurrir en
bloqueos o colisiéon entre los mismos, lo que implica la incorporaciéon de mecanismos de
consenso como Gossip, RAFT o Paxos, que no fueron implementados debido a la intencién
de mantener una comparaciéon equiparable entre ambas arquitecturas. Finalmente, esta-
blecer un esquema compacto de serializaciéon mas sofisticado podria abrir oportunidades a
establecer nuevos estdndares de transmision, por lo que se buscara realizar comparativas
més robustas entre serializadores de entornos XR.

Estos esfuerzos estaran guiados por el objetivo de transformar el sistema SRV-D de
un mero prototipo de investigaciéon en una infraestructura extensible con potencial de
despliegue en entornos reales.

CAPITULO 6. CONCLUSIONES GENERALES Y PERSPECTIVAS 54

Trabajos generados durante el desarrollo del proyecto

e G. A. Murillo Gutierrez, R. Jin, J.-P. I. Ramirez-Paredes, and U. H. Hernandez Bel-
monte, “A framework designed with perceptual symmetry and interactive asymmetry
for XR collaboration,” Symmetry, vol. 17, no. 11, 2025.

e G. A. Murillo Gutierrez, R. Jin, J.-P. I. Ramirez-Paredes, and U. H. Hernandez
Belmonte, “ARCanvas: A Mobile-Based Collaborative Colocated AR Drawing Ap-
plication,” Communications in Computer and Information Science, vol. 2553, 2025.

e G. A. Murillo Gutierrez, R. Jin, J.-P. I. Ramirez-Paredes, and U. H. Hernandez
Belmonte, “A Framework for Collaborative Augmented Reality Applications,” In
Companion Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games, article 2, 1-2, 2025.

e U. H. Hernandez Belmonte, J.-P. I. Ramirez-Paredes, and G. A. Murillo Gutierrez,
“Diseno e Implementacion de una Plataforma de Realidad Aumentada Colaborativa,”
Avances en sistemas Mecatronicos, vol. 1, no.1, 2023.

Bibliografia

1]

2l

3]

4]

[5]

(6]

7]

8]

9]

P. Wang, X. Bai, M. Billinghurst, S. Zhang, X. Zhang, S. Wang, W. He, Y. Yan,
and H. Ji, “AR/MR remote collaboration on physical tasks: A review,” Robotics and
Computer-Integrated Manufacturing, vol. 72, dec 2021.

J. Jang, Y. Ko, W. S. Shin, and I. Han, “Augmented reality and virtual reality for
learning: An examination using an extended technology acceptance model,” IEEFE
Access, vol. 9, pp. 6798-6809, 2021.

A. Vidal Balea, O. Blanco Novoa, P. Fraga Lamas, M. Vilar Montesinos, and T. M.
Ferndndez Caramés, “Creating collaborative augmented reality experiences for in-
dustry 4.0 training and assistance applications: Performance evaluation in the ship-
yard of the future,” Applied Sciences, vol. 10, no. 24, 2020.

L. Munoz Saavedra, L. Mir6 Amarante, and M. Dominguez Morales, “Augmented
and virtual reality evolution and future tendency,” Applied Sciences, vol. 10, no. 1,
2020.

P. Milgram, H. Takemura, A. Utsumi, and F. Kishino, “Augmented reality: A class of
displays on the reality-virtuality continuum,” in Telemanipulator and Telepresence
Technologies (H. Das, ed.), vol. 2351, pp. 282-292, International Society for Optics
and Photonics, SPIE, 1995.

G. Lampropoulos, P. Fernandez-Arias, A. de Bosque, and D. Vergara, “Virtual reality
in engineering education: A scoping review,” Education Sciences, vol. 15, no. 8, 2025.

S. Y. Andalib, M. Monsur, C. Cook, M. Lemon, P. Zawarus, and L. Loon, “Enhancing
landscape architecture construction learning with extended reality (XR): Comparing
interactive virtual reality (VR) with traditional learning methods,” Education Scien-
ces, vol. 15, no. 8, 2025.

J. Halman, S. Tencer, and M. Sieminski, “Artificial intelligence and extended reality
in the training of vascular surgeons: A narrative review,” Medical Sciences, vol. 13,
no. 3, 2025.

C. Hwang, T. Feuchtner, I. Oakley, and K. Grgnbak, “Enriching industrial training
experience in virtual reality with pseudo-haptics and vibrotactile stimulation,” in

55

BIBLIOGRAFIA 56

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]
[21]

Proceedings of the 30th ACM Symposium on Virtual Reality Software and Technology,
VRST 24, (New York, NY, USA), Association for Computing Machinery, 2024.

S. Zhang, Y. Li, K. L. Man, Y. Yue, and J. Smith, “Towards cross-reality interaction
and collaboration: A comparative study of object selection and manipulation in
reality and virtuality,” in 2023 IEEE Conference on Virtual Reality and 3D User
Interfaces Abstracts and Workshops (VRW), pp. 330-337, 2023.

T. Papadopoulos, K. Evangelidis, T. H. Kaskalis, G. Evangelidis, and S. Sylaiou, “In-
teractions in augmented and mixed reality: An overview,” Applied Sciences, vol. 11,
no. 18, 2021.

A. Qoltekin, I. Lochhead, M. Madden, S. Christophe, A. Devaux, C. Pettit, O. Lock,
S. Shukla, L. Herman, Z. Stachon, P. Kubi¢ek, D. Snopkova, S. Bernardes, and
N. Hedley, “Extended reality in spatial sciences: A review of research challenges and
future directions,” ISPRS International Journal of Geo-Information, vol. 9, no. 7,
2020.

N. Numan and A. Steed, “Exploring user behaviour in asymmetric collaborative
mixed reality,” in Proceedings of the 28th ACM Symposium on Virtual Reality Soft-
ware and Technology, VRST 22, (New York, NY, USA), Association for Computing
Machinery, 2022.

Y. Lee and B. Yoo, “XR collaboration beyond virtual reality: work in the real world,”
Journal of Computational Design and Engineering, vol. 8, pp. 756772, 03 2021.

J. Tumler, A. Toprak, and B. Yan, “Multi-user multi-platform xR collaboration:
System and evaluation,” in Virtual, Augmented and Mixed Reality: Design and De-
velopment (J. Y. C. Chen and G. Fragomeni, eds.), (Cham), pp. 74-93, Springer
International Publishing, 2022.

C. Lin, X. Sun, C. Yue, C. Yang, W. Gai, P. Qin, J. Liu, and X. Meng, “A novel work-
bench for collaboratively constructing 3D virtual environment,” Procedia Computer
Science, vol. 129, pp. 270-276, 2018. 2017 International Conference on Identification,
Information and Knowledge in the Internet of Things.

E. Games, “Photon engine,” 2025. Consultado en julio de 2025.

U. Technologies, “Netcode for gameobjects overview,” 2025. Consultado en julio de
2025.

M. Networking, “Mirror - networking library for unity,” 2025. Consultado en julio
de 2025.

M. Corporation, “Playfab backend platform,” 2025. Consultado en julio de 2025.
C. Cruz-Neira, D. J. Sandin, T. A. DeFanti, R. V. Kenyon, and J. C. Hart, “The cave:

audio visual experience automatic virtual environment,” Commun. ACM, vol. 35,
p. 64-72, June 1992.

BIBLIOGRAFIA 57

[22] C. Carlsson and O. Hagsand, “Dive a multi-user virtual reality system,” in Procee-
dings of IEEE Virtual Reality Annual International Symposium, pp. 394-400, 1993.

[23] M. R. Macedonia, M. J. Zyda, D. R. Pratt, P. T. Barham, and S. Zeswitz, “Nps-
net: A network software architecture for largescale virtual environments,” Presence:
Teleoper. Virtual Environ., vol. 3, p. 265287, Jan. 1994.

[24] IEEE Computer Society, “IEEE standard for distributed interactive simulation (dis)
— communication services and profiles.” IEEE Std 1278.2-2015, Nov. 2015. Disponible
en: https://standards.ieee.org/ieee/1278.2/6202/.

[25] C. Greenhalgh and S. Benford, “MASSIVE: a distributed virtual reality system in-
corporating spatial trading,” in Proceedings of the 15th International Conference on
Distributed Computing Systems (DCS’95), (Vancouver, Canada), pp. 27-34, IEEE
Computer Society, 1995.

[26] T. Ohshima, K. Satoh, H. Yamamoto, and H. Tamura, “AR2 Hockey: A case study
of collaborative augmented reality,” in Proceedings of the Virtual Reality Annual
International Symposium, VRAIS "98, (USA), p. 268, IEEE Computer Society, 1998.

[27] M. Billinghurst and H. Kato, “Collaborative mixed reality,” in Proceedings of the First
International Symposium on Mized Reality (ISMR) (Y. Ohta and H. Tamura, eds.),
(Yokohama, Japan), pp. 261-284, Springer-Verlag, 1999. ISBN 978-3-540-67260-6.

[28] M. Bauer, B. Bruegge, G. Klinker, A. MacWilliams, T. Reicher, S. Riss, C. Sandor,
and M. Wagner, “Design of a component-based augmented reality framework,” in

Proceedings IEEE and ACM International Symposium on Augmented Reality, pp. 45—
54, 2001.

[29] D. Schmalstieg, A. Fuhrmann, G. Hesina, Z. Szalavari, L. M. Encarnagao, M. Ger-
vautz, and W. Purgathofer, “The studierstube augmented reality project,” Presence,
vol. 11, no. 1, pp. 33-54, 2002.

[30] Vuforia, “Vuforia developer portal,” 2021. Consultado en agosto de 2025.

[31] Apple Inc., “Arkit framework.” https://developer.apple.com/documentation /arkit,
2017. Consultado en agosto de 2025.

[32] Google Inc., “Arcore sdk for augmented reality.” https://developers.google.com /ar,
2018. Consultado en agosto de 2025.

[33] I. B. K. Manuaba, “Mobile based augmented reality application prototype for remo-
te collaboration scenario using ARCore cloud anchor,” Procedia Computer Science,
vol. 179, pp. 289-296, 2021.

[34] P. Boonbrahm, C. Kaewrat, and S. Boonbrahm, “Effective collaborative design of
large virtual 3D model using multiple AR markers,” Procedia Manufacturing, 2020.

https://standards.ieee.org/ieee/1278.2/6202/
https://developer.apple.com/documentation/arkit
https://developers.google.com/ar

BIBLIOGRAFIA 58

[35] Microsoft Corporation, “Microsoft mesh.” https:/ /learn.microsoft.com /en-us/mesh /,
2020. Consultado en agosto de 2025.

[36] Spatial Systems Inc., “Spatial creator toolkit (Unity SDK).” https://support.spatial.
io/hc/en-us/articles /11633003556372-Spatial-Creator-Toolkit-Unity-SDK, 2023.
Consultado en agosto de 2025.

[37] Meta Platforms Inc., “Meta XR core SDK.” https:/ /assetstore.unity.com/packages
tools/integration /meta-xr-core-sdk-269169, 2023. Consultado en agosto de 2025.

[38] Apple Inc., “Realitykit framework documentation.”
https://developer.apple.com /documentation /realitykit, 2025. Consultado en
septiembre de 2025.

39| Microsoft Corporation, “Mixed reality toolkit (MRTK) for Unity.” https:
[p , y y 1
learn.microsoft.com /en-us/windows/mixed-reality /mrtk-unity /mrtk3-overview/,
2023. Consultado en agosto de 2025.

[40] U. Technologies, “XR interaction toolkit manual.” https://docs.unity3d.com
Packages/com.unity.xr.interaction.toolkit@3.0 /manual /index.html, 2025. Consulta-
do en septiembre de 2025.

[41] G. A. Murillo Gutierrez, Diseno, implementacion y evaluacion de un sistema de
realidad aumentada colaborativa. Tesis, Universidad de Guanajuato, Guanajuato,
Meéxico, 2023. Repositorio Institucional de la Universidad de Guanajuato.

[42] G. A. Murillo Gutierrez, R. Jin, J.-P. I. Ramirez-Paredes, and U. H. Hernandez Bel-
monte, “A framework designed with perceptual symmetry and interactive asymmetry
for XR collaboration,” Symmetry, vol. 17, no. 11, 2025.

[43] Google, “ARCore supported devices,” 2025. Consultado en julio de 2025.
[44] N. Stephenson, Snow Crash: A Novel. New York: Bantam Books, 1992.

[45] M. P. Inc., “Introducing Meta: A social technology company,” 2021. Accedido el 6
de octubre de 2025.

[46] P. A. Rauschnabel, R. Felix, C. Hinsch, H. Shahab, and F. Alt, “What is XR? towards
a framework for augmented and virtual reality,” Computers in Human Behavior,
vol. 133, p. 107289, 2022.

[47] S. Aukstakalnis, Practical Augmented Reality. Crawfordsville - Indiana: Mark L.
Taub, 2016.

[48] S. Hudson, S. Matson-Barkat, N. Pallamin, and G. Jegou, “With or without you?
interaction and immersion in a virtual reality experience,” Journal of Business Re-
search, vol. 100, pp. 459-468, 2019.

https://learn.microsoft.com/en-us/mesh/
https://support.spatial.io/hc/en-us/articles/11633003556372-Spatial-Creator-Toolkit-Unity-SDK
https://support.spatial.io/hc/en-us/articles/11633003556372-Spatial-Creator-Toolkit-Unity-SDK
https://assetstore.unity.com/packages/tools/integration/meta-xr-core-sdk-269169
https://assetstore.unity.com/packages/tools/integration/meta-xr-core-sdk-269169
https://learn.microsoft.com/en-us/windows/mixed-reality/mrtk-unity/mrtk3-overview/
https://learn.microsoft.com/en-us/windows/mixed-reality/mrtk-unity/mrtk3-overview/
https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@3.0/manual/index.html
https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@3.0/manual/index.html

BIBLIOGRAFIA 59

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

I. Rakkolainen, A. Farooq, J. Kangas, J. Hakulinen, J. Rantala, M. Turunen, and
R. Raisamo, “Technologies for multimodal interaction in extended reality—a scoping
review,” Multimodal Technologies and Interaction, vol. 5, no. 12, 2021.

H. Schraffenberger and E. van der Heide, “Multimodal augmented reality: the norm
rather than the exception,” in Proceedings of the 2016 Workshop on Multimodal
Virtual and Augmented Reality, MVAR ’16, (New York, NY, USA), Association for
Computing Machinery, 2016.

M. Baxter, A. Bleakley, J. Edwards, L. Clark, B. R. Cowan, and J. R. William-
son, ““You, move there!” Investigating the impact of feedback on voice control in
virtual environments,” in Proceedings of the 3rd Conference on Conversational User
Interfaces, CUI "21, (New York, NY, USA), Association for Computing Machinery,
2021.

A. Adkins, R. Canales, and S. Jorg, “Hands or controllers? how input devices and
audio impact collaborative virtual reality,” in Proceedings of the 30th ACM Sympo-
stum on Virtual Reality Software and Technology, VRST 24, (New York, NY, USA),
Association for Computing Machinery, 2024.

K. Pfeuffer, H. Gellersen, and M. Gonzalez-Franco, “Design principles and challenges
for gaze + pinch interaction in XR,” IEFEE Computer Graphics and Applications,
vol. 44, no. 3, pp. 74-81, 2024.

J. Kim, J. Cha, H. Lee, and S. Kim, “Hand-free natural user interface for VR HMD
with IR based facial gesture tracking sensor,” in Proceedings of the 23rd ACM Sym-
posium on Virtual Reality Software and Technology, VRST 17, (New York, NY,
USA), Association for Computing Machinery, 2017.

P.-S. Ku, T.-Y. Wu, and M. Y. Chen, “EyeExpression: exploring the use of eye
expressions as hands-free input for virtual and augmented reality devices,” in Pro-
ceedings of the 23rd ACM Symposium on Virtual Reality Software and Technology,
VRST 17, (New York, NY, USA), Association for Computing Machinery, 2017.

O. Bau and I. Poupyrev, “REVEL: tactile feedback technology for augmented
reality,” ACM Trans. Graph., vol. 31, July 2012.

J. Wang and S. Gao, “Electronic skin for virtual sensation generation in immersive
virtual and augmented reality,” IEEE Open Journal on Immersive Displays, vol. 1,
pp- 1-8, 2024.

A. S. Tanenbaum and M. van Steen, Distributed Systems: Principles and Paradigms,
ch. 1, pp. 2-9. CreateSpace Independent Publishing Platform, 2 ed., 2016.

A. S. Tanenbaum and M. van Steen, Distributed Systems: Principles and Paradigms,
ch. 2, pp. 36-54. CreateSpace Independent Publishing Platform, 2 ed., 2016.

BIBLIOGRAFIA 60

[60]

[61]

[62]

|63]

|64]

|65]

[66]

[67]

(68

[69]

[70]

[71]

72|

73]

|74]

S. A. Rollan, “Arquitectura del software: Anélisis de naps-
ter, gnutella y skype.” https:/ /www.studocu.com/es/document
universidad-pontificia-de-salamanca/arquitectura-del-software
arquitectura-del-software-analisis-de-napster-gnutella-y-skype-20242025

135426806, 2024. Analisis comparativo de arquitecturas P2P.

T. A. Alghamdi, R. Khalid, and N. Javaid, “A survey of blockchain based systems:
Scalability issues and solutions, applications and future challenges,” IEEE Access,
vol. 12, pp. 79626-79651, 2024.

J. Glazer and S. Madhav, Multiplayer Game Programming: Architecting Networked
Games, ch. 2, pp. 17-19. Boston, MA: Addison-Wesley Professional, 2016.

A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System Concepts, ch. 17,
pp. 760-765. Wiley, 10 ed., 2020.

J. Glazer and S. Madhav, Multiplayer Game Programming: Architecting Networked
Games, ch. 2, pp. 39-43. Boston, MA: Addison-Wesley Professional, 2016.

J. Glazer and S. Madhav, Multiplayer Game Programming: Architecting Networked
Games, ch. 3, pp. 65-68. Boston, MA: Addison-Wesley Professional, 2016.

J. Glazer and S. Madhav, Multiplayer Game Programming: Architecting Networked
Games, ch. 4, pp. 101-110. Boston, MA: Addison-Wesley Professional, 2016.

J. Glazer and S. Madhav, Multiplayer Game Programming: Architecting Networked
Games, ch. 5, pp. 139-148. Boston, MA: Addison-Wesley Professional, 2016.

B. A. Forouzan, Data Communications and Networking, ch. 10, pp. 258-281.
McGraw-Hill Education, 5 ed., 2013.

J. Nielsen, “Response times: The 3 important limits,” 1993. Consultado en julio de
2025.

J. Glazer and S. Madhav, Multiplayer Game Programming: Architecting Networked
Games, ch. 7, pp. 139-209. Boston, MA: Addison-Wesley Professional, 2016.

J. Glazer and S. Madhav, Multiplayer Game Programming: Architecting Networked
Games, ch. 11, pp. 280-286. Boston, MA: Addison-Wesley Professional, 2016.

Unity Technologies, “Unity engine.” https://unity.com, 2025. Versiéon utilizada:
2022.3 LTS.

Exit Games, “Photon unity networking (PUN).” https://www.photonengine.com
pun, 2025. Middleware para redes multijugador en Unity.

Epic Games, “Unreal engine.” https:/ /www.unrealengine.com, 2025. Motor de desa-
rrollo con replicaciéon nativa y soporte multijugador.

https://www.studocu.com/es/document/universidad-pontificia-de-salamanca/arquitectura-del-software/arquitectura-del-software-analisis-de-napster-gnutella-y-skype-20242025/135426806
https://www.studocu.com/es/document/universidad-pontificia-de-salamanca/arquitectura-del-software/arquitectura-del-software-analisis-de-napster-gnutella-y-skype-20242025/135426806
https://www.studocu.com/es/document/universidad-pontificia-de-salamanca/arquitectura-del-software/arquitectura-del-software-analisis-de-napster-gnutella-y-skype-20242025/135426806
https://www.studocu.com/es/document/universidad-pontificia-de-salamanca/arquitectura-del-software/arquitectura-del-software-analisis-de-napster-gnutella-y-skype-20242025/135426806
https://unity.com
https://www.photonengine.com/pun
https://www.photonengine.com/pun
https://www.unrealengine.com

BIBLIOGRAFIA 61

[75]

[76]

[77]

78]

[79]

[30]

[81]

[82]

[83]

[84]

[85]

[36]

[87]

Godot Engine Contributors, “Godot engine.” https://godotengine.org, 2025. Motor
libre y abierto para desarrollo 2D /3D con capacidades de red.

K. H. Ahlers, A. Kramer, D. E. Breen, P.-Y. Chevalier, C. Crampton, E. Rose,
M. Tuceryan, R. T. Whitaker, and D. Greer, “Distributed augmented reality for

collaborative design applications,” Computer Graphics Forum, vol. 14, no. 3, pp. 3—
14, 1995.

G. M. Olson and J. S. Olson, “Distance matters,” Human—Computer Interaction,
vol. 15, no. 2-3, pp. 139-178, 2000.

A. Schiéfer, G. Reis, and D. Stricker, “A survey on synchronous augmented, virtual,
andmixed reality remote collaboration systems,” ACM Comput. Surv., vol. 55, Dec.
2022.

T. Braud, L.-H. Lee, A. Alhilal, C. B. Ferndndez, and P. Hui, “DiOS—an extended
reality operating system for the metaverse,” IEEE MultiMedia, vol. 30, no. 2, pp. 70—
80, 2023.

D. G. Brown, S. J. Julier, Y. Baillot, M. A. Livingston, and L. J. Rosenblum, “Event-
based data distribution for mobile augmented reality and virtual environments,”
Presence, vol. 13, no. 2, pp. 211-221, 2004.

J. Herskovitz, Y. F. Cheng, A. Guo, A. P. Sample, and M. Nebeling, “XSpace:
An augmented reality toolkit for enabling spatially-aware distributed collaboration,”
Proc. ACM Hum.-Comput. Interact., vol. 6, no. ISS, 2022.

A. A. Simiscuka, T. M. Markande, and G.-M. Muntean, “Real-virtual world device
synchronization in a cloud-enabled social virtual reality IoT network,” IEEE Access,
vol. 7, pp. 1065688-106599, 2019.

A. Guo, I. Canberk, H. Murphy, A. Monroy-Hernandez, and R. Vaish, “Blocks: Colla-
borative and persistent augmented reality experiences,” Proc. ACM Interact. Mob.
Wearable Ubiquitous Technol., vol. 3, Sept. 2019.

V. Pereira, T. Matos, R. Rodrigues, R. Nobrega, and J. Jacob, “Extended reality
framework for remote collaborative interactions in virtual environments,” in 2019
International Conference on Graphics and Interaction (ICGI), pp. 17-24, 2019.

G. Kostov and J. Wolfartsberger, “Designing a framework for collaborative mixed
reality training,” Procedia Computer Science, 2022.

H.-J. Guo, O. E. Ashtiani, and B. Prabhakaran, “Experiences with CAMRE:
Single-device collaborative adaptive mixed reality environment,” ArXiv, vol. ab-
$/2310.04996, 2023.

B. Di Martino, G. J. Pezzullo, V. Bombace, L.-H. Li, and K.-C. Li, “On exploiting
and implementing collaborative virtual and augmented reality in a cloud continuum
scenario,” Future Internet, vol. 16, no. 11, 2024.

https://godotengine.org

BIBLIOGRAFIA 62

[33]

[89]

[90]

[91]

[92]

193]

[94]

[95]

[96]

[97]

98]

[99]

D. Mourtzis, V. Siatras, J. Angelopoulos, and N. Panopoulos, “An augmented reality
collaborative product design cloud-based platform in the context of learning factory,”
Procedia Manufacturing, vol. 45, pp. 546-551, 1 2020.

I. Viola, J. Jansen, S. Subramanyam, I. Reimat, and P. Cesar, “VR2Gather: A co-
llaborative, social virtual reality system for adaptive, multiparty real-time commu-
nication,” IEEE MultiMedia, vol. 30, no. 2, pp. 48-59, 2023.

B. Han, P. Pathak, S. Chen, and L.-F. Yu, “CoMIC: A collaborative mobile immersive
computing infrastructure for conducting multi-user XR research,” IEEE Network,
vol. 37, no. 6, pp. 124-131, 2023.

M. Sereno, X. Wang, L. Besancon, M. J. Mcguffin, and T. Isenberg, “Collaborati-
ve work in augmented reality: A survey,” IEEE Transactions on Visualization and
Computer Graphics, pp. 1-1, 10 2020.

V. Bréhault, E. Dubois, A. Prouzeau, and M. Serrano, “A systematic literature review
to characterize asymmetric interaction in collaborative systems,” in Proceedings of
the 2025 CHI Conference on Human Factors in Computing Systems, CHI '25, (New
York, NY, USA), Association for Computing Machinery, 2025.

J. G. Grandi, H. G. Debarba, and A. Maciel, “Characterizing asymmetric collabo-
rative interactions in virtual and augmented realities,” in 2019 IEEE Conference on
Virtual Reality and 3D User Interfaces (VR), pp. 127-135, 2019.

A. Agnes, F. Sylvain, R. Vanukuru, and S. Richir, “Studying the effect of symmetry
in team structures on collaborative tasks in virtual reality,” Behaviour € Information
Technology, vol. 42, no. 14, pp. 2467-2475, 2023.

Y. Huang, H. Wang, X. Qiao, X. Su, Y. Li, S. Dustdar, and P. Zhang, “SCAXR:
Empowering scalable multi-user interaction for heterogeneous XR devices,” IEFEFE
Network, vol. 38, no. 4, pp. 250-258, 2024.

D. Frey, J. Royan, R. Piegay, A.-M. Kermarrec, E. Anceaume, and F. Le Fessant,
“Solipsis: A decentralized architecture for virtual environments,” in 1st International
Workshop on Massively Multiuser Virtual Environments, (Reno, NV, United States),
Mar. 2008.

S. Huh, S. Muralidharan, H. Ko, and B. Yoo, “XR collaboration architecture based on
decentralized web,” in Proceedings of the 24th International Conference on 3D Web
Technology, Web3D ’19, (New York, NY, USA), p. 1-9, Association for Computing
Machinery, 2019.

N. Suslov, “Implementing decentralized virtual time in p2p collaborative learning
environment for web XR,” in 2021 7th International Conference of the Immersive
Learning Research Network (iLRN), pp. 1-4, 2021.

C. Corporation, “Croquet OS: A shared reality operating system.” https://croquet.io,
2020. Consultado en octubre de 2025.

https://croquet.io

BIBLIOGRAFIA 63

[100]

[101]

[102]

[103]

104]

[105]

[106]

[107]

[108]

[109]

[110]

M. Norman, G. Lee, R. T. Smith, and M. Billinghurs, “A mixed presence collaborative
mixed reality system,” in 2019 IEEE Conference on Virtual Reality and 3D User
Interfaces (VR), pp. 1106-1107, 2019.

N. Pereira, A. Rowe, M. W. Farb, I. Liang, E. Lu, and E. Riebling, “ARENA: The
augmented reality edge networking architecture,” in 2021 IEEE International Sym-
posium on Mized and Augmented Reality (ISMAR), pp. 479-488, 2021.

Decentraland, “About decentraland.” https://docs.decentraland.org/player/general
about/; 2025. Consultado el 14 de octubre de 2025.

A. Ghosh, Lavanya, V. Hassija, V. Chamola, and A. El Saddik, “A survey on de-
centralized metaverse using blockchain and web 3.0 technologies, applications, and
more,” IEEFE Access, vol. 12, pp. 146915-146948, 2024.

S. K. Jagatheesaperumal, K. Ahmad, A. Al-Fuqaha, and J. Qadir, “Advancing educa-
tion through extended reality and internet of everything enabled metaverses: Appli-

cations, challenges, and open issues,” IEEE Transactions on Learning Technologies,
vol. 17, pp. 1120-1139, 2024.

H. Zhang, L. Li, Q. Lu, Y. Yue, Y. Huang, and S. Dustdar, “Distributed realti-
me rendering in decentralized network for mobile web augmented reality,” Future
Generation Computer Systems, vol. 158, pp. 530-544, 2024.

S. Sharma, D. Das, and S. Chaudhury, “A decentralized privacy-preserving XR sys-
tem for 3D medical data visualization using hybrid biometric cryptosystem,” Scien-
tific Reports, vol. 15, no. 28568, 2025.

P. Bhattacharya, D. Saraswat, A. Dave, M. Acharya, S. Tanwar, G. Sharma, and
[. E. Davidson, “Coalition of 6G and blockchain in AR/VR space: Challenges and
future directions,” IEEE Access, vol. 9, pp. 168455-168484, 2021.

C. Baillard, M. Fradet, V. Alleaume, P. Jouet, and A. Laurent, “Multi-device mi-
xed reality TV: a collaborative experience with joint use of a tablet and a headset,”
in Proceedings of the 23rd ACM Symposium on Virtual Reality Software and Tech-
nology, VRST ’17, (New York, NY, USA), Association for Computing Machinery,
2017.

T. Piumsomboon, A. Dey, B. Ens, G. Lee, and M. Billinghurst, “CoVAR: Mixed-
platform remote collaborative augmented and virtual realities system with shared

collaboration cues,” in 2017 IEEE International Symposium on Mized and Augmen-
ted Reality (ISMAR-Adjunct), pp. 218-219, 2017.

W. Zhang, B. Han, P. Hui, V. Gopalakrishnan, E. Zavesky, and F. Qian, “CARS:
Collaborative augmented reality for socialization,” HotMobile 2018 - Proceedings of
the 19th International Workshop on Mobile Computing Systems and Applications,
vol. 2018-February, pp. 2530, 2 2018.

https://docs.decentraland.org/player/general/about/
https://docs.decentraland.org/player/general/about/

BIBLIOGRAFIA 64

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

D. C. Rompapas, C. Sandor, A. Plopski, D. Saakes, J. Shin, T. Taketomi, and H. Ka-
to, “Towards large scale high fidelity collaborative augmented reality,” Computers and
Graphics (Pergamon), vol. 84, pp. 24-41, 11 2019.

S. Benbelkacem, N. Zenati-Henda, D. Aouam, Y. Izountar, and S. Otmane, “MVC-
3DC: Software architecture model for designing collaborative augmented reality and

virtual reality systems,” Journal of King Saud University - Computer and Informa-
tion Sciences, vol. 32, pp. 433446, 5 2020.

A. Villanueva, Z. Zhu, Z. Liu, K. Peppler, T. Redick, and K. Ramani, “Meta-AR-App:
An authoring platform for collaborative augmented reality in STEM classrooms,”
Conference on Human Factors in Computing Systems - Proceedings, 4 2020.

T. Porcino, S. A. Ghaeinian, J. Franz, J. Malloch, and D. Reilly, “Design of an XR
collab. arch. for mixed immersive and MS interaction,” 2022.

Y. Huang, H. Wang, X. Qiao, X. Su, Y. Li, S. Dustdar, and P. Zhang, “SCAXR:
Empowering scalable multi-user interaction for heterogeneous XR devices,” IFEFE
Network, vol. 38, no. 4, pp. 250258, 2024.

H. Neeli, K. Q. Tran, J. D. Velazco-Garcia, and N. V. Tsekos, “A multiuser, multi-
site, and platform-independent on-the-cloud framework for interactive immersion in
holographic XR,” Applied Sciences, vol. 14, no. 5, 2024.

A. Close, S. Field, and R. Teather, “Visual thinking in virtual environments: eva-
luating multidisciplinary interaction through drawing ideation in real-time remote
co-design,” Frontiers in Virtual Reality, vol. 4, 2023.

G. A. Murillo Gutierrez, “SRVS-C: Spatially referenced virtual synchronization for
collaboration.” https://github.com /MurilloLog/SRVS-C, 2025. GitHub repository.
Framework for collaborative mixed reality experiences integrating AR and VR.

A. Nagy and B. Kovari, “Analyzing .NET serialization components,” in 2016 IEEE
11th International Symposium on Applied Computational Intelligence and Informa-
tics (SACI), pp. 425-430, 2016.

N. Contributors, “NetMQ - native C# port of ZeroMQ.” https:/ /netmq.readthedocs.
io/en/latest/, 2025. Consultado en septiembre de 2025.

F. Reyes-Aviles, P. Fleck, D. Schmalstieg, and C. Arth, “Compact world anchors:
Registration using parametric primitives as scene description,” IEFEE Transactions
on Visualization € Computer Graphics, vol. 29, pp. 4140-4153, Oct. 2023.

J. J. Dudley, H. Schuff, and P. O. Kristensson, “Bare-handed 3D drawing in augmen-
ted reality,” in Proceedings of the 2018 Designing Interactive Systems Conference,
DIS ’18, (New York, NY, USA), p. 241-252, Association for Computing Machinery,
2018.

https://github.com/MurilloLog/SRVS-C
https://netmq.readthedocs.io/en/latest/
https://netmq.readthedocs.io/en/latest/

	Introducción a la colaboración inmersiva
	De experiencias aisladas a la colaboración
	Antecedentes históricos de la colaboración XR
	Hipótesis
	Objetivo general
	Objetivos específicos

	Delimitación y alcance de la investigación
	Organización de la tesis

	Fundamentos para la descentralización en XR
	Introducción a la colaboración inmersiva
	Principios de la computación distribuida
	Arquitecturas distribuidas
	Arquitectura centralizada
	Arquitectura descentralizada
	Arquitectura híbrida

	Protocolos de comunicación
	Envío de mensajes a través del protocolo TCP/IP
	El dilema del transporte: TCP frente a UDP
	Sockets

	Serialización y formatos de mensajes
	Replicación y consistencia de datos
	Mecanismos de control y unicidad

	Desafíos técnicos en la colaboración XR distribuida
	Entornos de programación XR y sus arquitecturas de conectividad

	Estado del arte
	Arquitecturas centralizadas
	Soluciones descentralizadas
	Vacíos conceptuales identificados en la literatura

	Implementación del sistema
	Mecánica general
	Diseño de la arquitectura centralizada
	Conexiones y desconexiones
	Gestión de usuarios
	Matchmaking
	Manejador de serialización
	Bloque de difusión

	Diseño de la arquitectura descentralizada
	Mecanismo de descubrimiento de nodos
	Gestión de sockets y conexiones
	Flujo de operación del sistema

	Diseño del entorno interactivo API–AR
	Diseño funcional
	Sincronización espacial mediante anclajes persistentes
	Generación y transmisión de trazos espaciales
	Recepción, reconstrucción y animación de trazos remotos

	Diseño del entorno interactivo API–VR
	Lógica de interacción
	Lógica de sincronización espacial

	Pruebas y resultados
	Metodología y validación experimental
	Configuración de los trazos
	Métricas de evaluación

	Resultados experimentales
	Latencia del sistema
	Latencia de replicación

	Conclusiones generales y perspectivas

