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ABSTRACT

A theoretical formalism to describe the diffusion coupling process in multiply non-ideal
associating aqueous electrolyte solutions is presented. Association considers complexes
formation to arbitrary order. Non-ideality is taken into account with the use of the mean
spherical approximation (MSA). The internal electrical field due to the major electrolyte,
is calculated using the dynamical electroneutrality condition and the general equations are
solved in two ways: (i) a classic finite differences method and (ii) a linearization procedure
or normal mode (NM) analysis. This last approximation gives closed analytical relations
showing explicitly the coupling between association and non-ideality phenomena. To
illustrate both methodologies, new experimental results are presented for the diffusion
of an electrolyte mixture of ZnCl, and LiCl where Cl™ ions and tracer Zn** ions can
associate to form complexes up to ZnCli_ (pentamers). The theoretical results are in
good agreement with the experimental data.
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CHAPTER 1

INTRODUCTION

Aqueous electrolytes are ubiquitous on earth. They may be found, for instance, in natural
waters like oceans and lakes and also in almost all living beings. They have a huge
influence on the development and functioning of life on the planet. Moreover the motion
of ionic species is an important process that governs the local amount of ions. In this
respect, aqueous electrolytes have the particular property that the motions of different
ions in a medium are strongly coupled through the effect of electrostatic interactions [1].

Diffusion coupling thus can be observed in many natural and industrial domains and
systems, such as in geochemistry (when studying diagenetic fluxes in sediments [2,3]),
in biophysics (e.g. for a description of permeation through ionic channels of cells [4]),
in engineering processes (e.g., when using membranes for industrial separations [5]), in
materials science (e.g., for the assessment of chemical ageing of concrete and composite
materials [6]).

Diffusion coupling in aqueous ionic solutions has been investigated at a fundamen-
tal level for a long time [1]. Theoretical descriptions have been developed that assume
linear transport theory, in which fluxes are linear functions of forces [7]. Multicompo-
nent diffusion has been examined in the framework of Onsager formalism of irreversible
thermodynamics [8].

A phenomenon that has great influence on coupled diffusion in electrolytes is ionic
association, consisting either of ion pairing or chemical reaction. In geochemistry, Lasaga
first examined the influence of ion pair formation on diagenetic fluxes in marine sediments
[3] Ton pairing is important because it modifies the charge of the diffusing species and so
changes their response to the electrostatic diffusion field that is created by the diffusing
ions. A clear example is that of a monovalent tracer ion that associates with a monovalent
anion, which forms a neutral species that is insensitive to the diffusion field.

Some time ago, were investigated the effect of ion pairing caused by magnesium(II) ion
on the transient transport of sulfate ion by carrying out experiments in a special diffusion
cell (closed capillary) [9]. Later, was also investigated the effect of a pH gradient on sulfate
and phosphate ions [10]. In these works, the diffusion-reaction equations were solved by
using two types of treatments: a ‘normal-mode’ (NM) analysis in which the equations are
linearized and solved analytically [11]; and a classical numerical finite-difference method
in which time and space are sliced and the equations are solved incrementally in the
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course of time. In these treatments, the equations were written in the ideal case in which
activity coefficients are taken equal to unity. Besides, the associations involved only one
type of complex, leading to an ion pair MgSOY in the case of Mg?* and SO3™ [9], or to
the hydrogen sulfate ion HSOj in the case of sulfate in the pH gradient.

In environmental media, the ionic pollutants exist in various forms. For instance,
toxic heavy metal ions of various valencies such as zinc, cadmium, lead, and mercury,
may form a series of complexes with complexing ions like chloride, nitrate and hydroxide,
among others. The speciation of these ions in the environment is an important issue
because complexation modifies the electric charge borne by the ions. Consequently it
modifies the transport of trace metal ions when they are submitted to diffusion electric
fields caused by major ions in the environmental medium and the physical and chemical
behavior of the ion interacting with the environment.

Various softwares exist commercially which permit estimations of the speciation for
many metal ions in aqueous solutions. One may cite the following which have been devel-
oped in various countries: MINTEQ [12], MINEQL+ [13|, JCHESS [14], PHREEQC [15]
and CHEAQS [16]. The calculation of the speciation is based on a solution to the chem-
ical association equilibria which involve the introduction of thermodynamic association
constants (cumulative constants 3, for n = 1,2,3,...) and the use of formulas for the
computation of the activity coefficients of the species. The softwares rely on previous
determinations of the association constants, which can be found in famous books (e.g., in
the book by Sillen and Martell [17]) or in the NIST Database [18|. In general deviations
from ideality were computed using equations of the Debye—Hiickel type (like the Davies
equation). Depending on the values taken for the f,’s and on the equation used, the
softwares may give speciations that differ in magnitude. Because the speciation is gen-
erally very difficult to determine experimentally without ambiguity, there may be some
uncertainty in the determination of speciation in electrolyte solutions.

We propose to study transient diffusion patterns produced by some metal cations
giving rise to multiple association. The metal cation used in tracer amount is placed in
the diffusion electric field originating from the diffusion of a major salt. Then, this type
of experiment is an extension of the experiments we had carried out with magnesium(II)
ion and sulfate ion [9,10] which gave one ion pair to the case of electrolytes leading to a
series of stepwise associations. It is a way of probing the validity of traditional approaches
to describe the motion of such complex associating salts in internal electric fields.

In this work, we carried out experiments with zinc(II) cation which can multiply
associate with the chloride anion. In the configuration used zinc(II) ion can give 4 com-
plexes: ZnCl*, ZnCl), ZnCl; and ZnCl3~ [17]. These complexes should be of covalent
nature, except for the monochloro-complex ZnCl* which may be essentially ionic [19].
The zinc ion was taken in radioactive form, %Zn?*. A special technique consisting of a
silica capillary inserted in a cylinder of scintillating plastic was utilized to observe the
transient concentration profiles of the radioactive tracer [20]. The major salt producing
the internal electric field was LiCl. It was chosen because it produces a strong electric
field, which is due to the greatly differing values of the diffusivities of the two ions Li™
and Cl~. The observed experimental transient profiles were modeled by using finite dif-
ferences and normal-mode techniques. In contrast with previous work about coupling
diffusion, the deviations from ideality were included in the algorithms and complexation
was taken into account to arbitrary order. For this purpose the activity coefficients of
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all species were calculated using the mean spherical approximation. The results obtained
from these methods were compared with the experimental data.







CHAPTER 2
ELECTROLYTES AT EQUILIBRIUM

2.1 Physical System

A mixture of two aqueous electrolyte solutions is considered: an M A salt (or the major
electrolyte) combined with an 7°A salt (where cation T is radiactive) with arbitrary ion’s
valences and both salts having the same anion. Moreover, in this work we are considering
that we have a non-ideal solution where the only associating ions are the cation T and
the anion A, such that each cation T can bind an arbitrary number of anions.

Sistema Fisico (t>0)

o0 0 0¢° 0 *
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go e 0 @ 0

L L

Figure 2.1: Physical system: A mixture of an M A salt (or the major electrolyte) combined
with an T'A salt with arbitrary ion’s valences and both salts having the same anion where
only the cation T associates with the anion A to make complexes. We show the case of
LiCl with ZnCl, to illustrate our system.

We start our analysis describing the physical electrolyte model that we are considering
on this work. The electrolyte in question considers complex formation, i.e. we have the
formation of different "species" inside our solution, specifically the ones which includes
the binding of zinc ion with one clhoride ion, the binding of zinc-chloride with one chloride
anion, the binding of zinc-2chloride with one chloride ion and so on until complete four
chloride binded ions to the zinc. The Figure 2.1 show us the two ion with its respective
binding sites.
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Figure 2.2: In this figure we show both ions with its respective binding sites. The different
species were done with some particular combinations of these ions.

Now we write the reaction equations who describe our system where we include the
activity coefficients. Those are given next:

voCp
T+A=TA Kl_’YTCT(’)’ACS)
Tl o, — Pills K, = —JrROTR
¥pCp(74Cs)
iy e e A K, = — reCre
YrrRCTR(74CS)
vpeCPE
TAs+ A=TA, e (2.1)

Where T = Zn*?* jon and A = CI'~ ion, i.e. the zinc ion is the tracer (radiactive
ion) in this particular case. And now the complex concentrations takes the form

O — B1yrCr(vsCs)
g e
YD
O BoyrCr(vsCs)?
TR =
YTR
O — BsyrCr(7sCs)?
TE =
YTE
C Cs)?
Gl BiyrCr(vsCs) (2.2)
YPE

Where we can see that all the concentrations depends on the salt concentration and
the tracer concentration. Moreover the fis variables are the so called cummulative equi-
librium constants defined by:

Bi=K Ky - Kg---K;_1-K;, 1=1,...,n (n = positive integer) (2.3)



2.2 The Debye—Hiickel theory and primitive model

The Debye-Hiickel (DH) theory is a theoretical explanation proposed by P. Debye and E.

Hiickel in 1923, to explain the deviation of ideality for two systems of interest: electrolyte

solutions and. plasmas. This theory nowadays is considered as the starting point for

treatments of non—ideality of electrolyte solutions. Such a theory is based on the next

considerations: 1) it recognizes that the physical system (for aqueous electrolytes) is |
conformed by cations, anions and water molecules. Furthermore, the water molecules
can hydrate the cations and anions in some ways. Due to the fact that there is to ‘
difficult to consider water structure, Debye and Hiickel decide to “remove”’ the water

molecules, retaining only its dielectric effect via its electrical permitivity. This physical

space is knowed as the “dielectric continuum”. 2) On average, each ion is surrounded by

counterions (ions of opposite charge) and they will aggregate to form clusters: choose

an arbitrary ion with charge z.e at the center, then many counterions will surround

the ion forming a “charge’s cloud” neutralizing the ion’s charge z.e. Besides, that first

“cloud” will result in the emergence of a new neighbour “cloud” that will surround the

first and it will be of opposite sign. And so on. These “clouds” are called “cospheres”

and the center ion has a group of cospheres surrounding it. Placing a test charge e at

a distance r from the center ion will interact with the center ion and the cospheres ions

via Coulomb’s equation. The average electrostatic potential (AEP) ¥(r) (which is the

sum of the Coulomb interaction with z.e and all the cosphere interactions that the test

charge will experience coming from r = oo to r) that the unit charge will experience in

the solution was described by Debye and Hiickel with the use of Poisson’s equation. 3)

The ions in the cospheres follows a Boltzmann distribution. 4) It is possible to linearize

the resulting Poisson-Boltzmann equation. 5) The cations and anions don’t have volume

which means that they’re point charges. This kind of model is called the primitive model

(PM). If we consider a neutral mixture of charged hard spheres (insted of point charges)

of the same or different diameter o; and charge z;e we are talking about the restricted

and unrestricted primitive model (RPM and UPM) [21].

2.3 The mean spherical approximation for the restricted
primitive model

The principal problem with the DH theory is that it doesn’t takes into account the
interactions at short range level between the particles (ions, in the case of electrolytes)
which is a very important fact when the solute concentration is increased. The mean
spherical approximation (MSA) deals with this problems considering the sizes of the
particles and the electrostatic long-range interactions. The MSA is an analytical theory
that could be used for electrolyte solutions in the ionic approach. The name cames
because this approximation is a generalization of the mean spherical model (MSM) of
Ising spin systems was introduced. The spherically symmetric case (all the ions has the
same diameter) has the next general form for the potential
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vir =0 A
= #ir) r>0 (2.4)

where ¢ is the hard-sphere diameter. Similarly, in terms of the pair distribution
function and direct correlation function it states

g(r)=0 A
c(r) = —Pu(r) r >0 (2.5)

On the other hand, the Ornstein-Zernike (OZ) equation which is a definition of the
direct correlation function ¢(r) can be written down mathematically as

W) —e(r) = 3 / e ileellr =) (2.6)
k

Combining the expressions (2.4), (2.5) and (2.6) we obtain an integral equation for
the pair distribution function g(r). Furthermore, an attractive feature of the MSA is that
the integral equation can be solved analytically for a various potential models of physical
interest, per example, the hard core Yukawa fluid, simple models of electrolyte solutions
and polar liquids [22].

Next, we proceed to give a description of the different contributions to the thermo-
dynamics and the radial distribution functions of a primitive model, within the MSA
description.

Thermodynamics
The density of free energy f (defined as f = F//V) is the charged hard-spheres mixture’s
density, and it’s naturally separated in the next terms

Bf = Bf+ B + Bf (2.7)
with f the ideal contribution, f** the hard-sphere (i.e., the excluded-volume) and
f¢ the electrostatic free energy contribution terms.

Ideal contribution
The ideal contribution is equal to the free energy of the same composition ideal-gas

FF= Zpi(ﬂu:id ~1) (2.8)

with the equallity Suid = In(A?p;) (a term who depends on the species’s density and
mass) and A; the knowed i-th thermal de Broglie’s wavelength A; = (m)%
Hard-sphere contribution or Excluded Volume Contribution
The hard sphere contribution 8f# is calculated from the Carnahan-Starling approxima-

tion [23,24] to get

m % 3X:.X; | X}
SBf1 = (X_g - X0> In(A) + =3+ a3 (2.9)
3

where



J— m n
Ay = EXk:pkak

t=A=1-X; (2.10)

Electrostatic contribution
The electrostatic contribution obtained by the MSA solution has the form

Bf% = BAE + I’ (2.11)
3

where the definition of the excess internal energy is

_ Be? piz} PkOkZk
o= € g = 1+4Ta; = —~ 1+ Loy )

where I' could be seened as the generalization of the inverse Debye’s length (kp,
definded below) and can be obtained from the next implicit equation

47 Be? z —on 2
o — o=
l: € Zp] ( 1+ FO’i

W=

(2.13)
and
1z PiT%;
. 2.14
"7 Q28 Z41+ Ty, (2:14)
(2.15)
m Pk}

Q=14+ — 2.1

T 38 2411 Ta; 219}

with A defined by (2.10)
Usually, (2.13) and (2.16) is easily solved by iteration starting with the initial value
21"y = kp, where kp is the Debye screening parameter:

1/2

4 fe? 2
b — z . 2-17
KD ( : Ei p: Zz) ( )

With the mean ionic parameter approximation ¢; = o (which mean that all the species
have the same diameter) eq. (2.10) becomes
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T = [(1+ 2kpos)'/? —1]/(205)

Kp = (471')\Zp1212>

1
2

kp = (87 Aps) (2.18)
with
A= L @ sk (2.19)
kT 4mege, ’

for €y = 8.85 x 107!2 the vacuum permittivity and ¢, = 78.38 the dielectric constant of
water at T = 25 °C. ‘

Activity Coefficients Using the MSA

The activity coefficients using the MSA (on the laboratory system of reference, i.e.,
the reference frame in which the experiment is done) are [25, 26|

In ¥R = InyMM — C . V;oMM (2.20)

2

where C'is the total concentration and is equal to 2C in our case.
While for a salt S in a mixture the activity coefficient is:

In 'yéR — ln'yg“l — 2CSV5¢MM/VS
InvER = InyMM — CsVsMM/ (2.21)

with vg = vy + v = 2 and Vg the mean partial molar volume of salt S defined by

_ Ms—ds

Ve=go Csd’;

(2.22)

where Mg is the molar mass of S, Cs its molar concentration and ds = dd/9Cs and d
is the density of the solution and is given as a polinomial function of the salt concentration
as

di=d, +thCs—dss* (2.23)

d, is the density of the pure solvent (water, in our particular case), d; and d, are
constant coefficients whose value depends on the solvent in question.

Osmotic coefficient
The osmotic coefficient at the MacMillan-Mayer level has the next form

¢MJ\[ = i +¢MSA +¢HS (224)
where the mean spherical approximation or the electrical contribution is written as
FS
MSA
=—— 2.25
¢ T (2.25)
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pe = 2ps = total density of the system, with pg the salt density. The hard sphere
(HS) contribution becomes

X 3XiXe | X33 Xs)

HS: __
T TR — X T Xo(l = Xa)?

(2.26)

with the terms Xs defined by (2.10)

For now, we’ll keep our attention just on MacMillan-Mayer’s activity coefficients re-
lation for the complex and the tracer. So we need both contributions: the one due to the
electrostatic contribution and the other one due the hard sphere.

Hard Sphere contribution This contribution is given by the equation:

ln(%)(HS) =—-Inz+o;-Fi+02-F+02-F3 (2.27)
and
p 3o
z
F = 3{1 + 3%% + 35)§—§lnx
F;= (XO - %) % 4 3k ;XS/X‘? + 2%2 Inz (2.28)

where X, and z are obtained from (2.10).
From 2.27 we can write the activity coefficient’s HS contribution for every zinc’s
complexes and for the salt

In 7;,13'3 =—lnzx+opFy + U%Fz + J%Fg
ln'ygs =—Inx+opF + O%Fz + 0‘3DF3
ln'y{!g =—Inz+ UTRFl + O'%RFQ + O'%RF3
In '77{15 =—Ilnz+ UTEFl + U%EFz + U’:IS’E‘FZ;
Inyis = —Inw+ dephi + 025 +obpFy
InvdS = —-Inz+ osF + 02 F 4+ o3 F3
(2.29)
2.4 Activity Coefficient Curves
We start writing the Zinc system’s total concentration
Cror=Cr+Cp+ Crr+ Crg + Cpg (230)

where we are considering the zinc clhoride electrolyte’s complex formations: Dimer
[ZnCl|(z2 = 1+) Trimer [ZnCly)(z3 = 0), Tetramer [ZnCls|(z4 = 1—) and Pentamer
[ZnCly|(z5 = 2—). Using the BIMSA paper notation [26] for the activity coefficients, the
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concentration equations 2.2 becames

CD_,BI"YT

CTR =

B2-Cr

O - Cs)?

Crg =

LR)
’Y”EPR

Bs-Cr - ’Yr(pLR) (’YéLR) - Cg)?

ﬁ4 'CT

(LR)
YrE

. V;LR) (’Yé‘LR) . CS)4

Cpg =

And then equation (2.30) becames

Cror =

Br- i Cr 5" -

TR (2:81)
TPE

Cs n B2 Cr - ’YqéR(%éR ) CS)2

LR
YD

+ﬂ3 : Cf : ’)’%R(’YgR : CS)3 4 Ba-Cr- ’Y%R(’)’gR : 03)4

LR
YTR

LR
YTE

(2.32)
vER

Now, if we define the concentration fractions (denoted by X/s) as

Xr

Xp

Xtr =

XrE

XpE

Cr

G
Cp

Cror
Crr

CTOT
CTE

Cror
Crg

C'TOT

(2.33)

Then, substituting eqs. (2.31) and (2.32) on (2.33) gets

Xy =

1

BakRAtRCs | BaakR(1ER-Cs)?

(2.34)

Bz R(vER-Cs)? + BavER(vER-Cs)
17

TR LR
D YTR

LR R
TE YPE

BiyrLrY2LrRCs

Xp=

YDLR

BLygRAER-Cs 4 B2 R(1ER-Cs)?
L

(2.35)

BsvpR(vER-Cs)? e BavpR(yER-Cs)t

LR R
D TR

LR LR
TE TPE

B2yrLr(¥2LR-Cs)?

XtRr =

YTRLR

BLyER~gR-Cs 4 BavpR(vER-Cs)?

(2.36)

D TR

BapRlygh-Cs)® | BavtRlys™Cs)t
LR LR
TE YPE
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Bs-yrLr(y2Lr-Cs)®

XrE = LR..LR LR(LR z'YTELR LR(~LR.0.\3 LR(-LR.C.\4 (2'37)
Br1ygtvgtCs | B2yt (v5Cs) BaygH(vg*Cs) Bayp(v§"-Cs)
TR TR os TR i TR
b TR TE YPE
BayrLr(Y2LRr-Cs)*
N — YPELR 2.38
PE = 5iAERALRCs | paykR(yER-Cs)? | PsvER(xER-Cs)® | ParkR(zEF-Cs)t (2.38)
R IR + TR i IR
R} YTR TE YPE

Note that in equations (2.34)-(2.38) the dependence on Cy vanishes. The curves on
2.3 were obtained using Maplel3 [27].

Figure 2.3: "Molar fractions" of the complexes on the system. Solid is for Tracer, dot for
Dimer, dash for Trimer, dashdot for Tetramer and longdash for Pentamer

2.5 Multiply associating electrolytes in the binding mean

spherical approximation (BiMSA)
The MSA has provided poor results for a highly-charged systems with low solvent dielec-
tric constant that presents strong electrostatic attraction, where the association of tree

ions to create complexes is favoured. The development of a theory which permits bond’s
formation between ions via a sticky-point potential which is a generalization of the MSA,
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is due to Blum and Bernard. From now on, we’ll consider a binary ionic solution consti-
tuted from a salt (a cation and an anion) in a solvent (usually water). We assume that
one of the ions has multiple association sites and binds to its one-site counterion. This ion
will be called polyion, denoted by p and the counterion denoted by c¢. The two ions have
number densities p;, charge ez; and hard core diameter ;. The solvent is regarded as a
continuum of relative permittivity €,. The temperature of the system is T, Boltzmann’s
constant is kg and we set § = 1/kgT throughout. The sites on the ions are randomly
positioned on their surface. These binding sites will be denoted by Sy, with k£ an integer
running from 1 to N for the polyion. For this model, the free energy can now be written
as [28]

FB 3
BAA =BAE® + [3—73 — B(BpcWie + PecWer) + BAA™® (2.39)
where
OAE €2 2
_ 226X _ya (2.40)
3*‘1) 3 o, + 0 N
6AEel 2 9 0)2
== == (xc) =T, (2.41)
3151(,“ ) I (0p + 20.)(1 + T'Boy)

Osmotic and mean activity coefficients

The osmotic coefficient can be separated in electrostatic and associative contribution
like

Ap = Ag™ + ¢ (2.42)
with
el __ [FB] 2[3 2 12
A = 37TC0 < 7r[ n'] (2.43)
and
1 olng3(a,,)
AN = s ] i Y ] 4 il e 2.44
6 = i =00 [ 14 3 p o (244

Meanwhile the mean activity coefficient can also be separated in two contributions
Alnyy = Alnye + Alny® (2.45)
with

14



y eQﬁ 77T
Alnyg = i ;pksz;? = TIT;Pkak (xﬁ + ?013) (2.46)

and

dln Oise
ppclnaC - pplnozp pc — ) Zpk gpc L ) (2.47)

Co Go

We included section 2.5 to show that Equations (2.45) to (2.47) (for the activity coef-
ficient’s) considers the dependence on complex densities and can be used as an extension
of that obtained via MSA. We assume that in our particular case, the use of the later ex-
tensions weren’t necessary because we work at not so high concentrations for the present
salts.

Alnyg =
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CHAPTER 3

NON-EQUILIBRIUM ELECTROLYTES

3.1 Flows and currents

A non-equilibrium thermodynamic system is submitted to various internal and external
forces who are responsible of the irreversible processes and chemical reactions inside
the system. Chemical reactions don’t require inhomogeneities on the space such like
the transport phenomena who really needs an intensive variable gradient to produce
flows which are proportional to those gradients at low particle concentrations. Regularly,
transport phenomena and chemical reactionss are coupled, and therefore they present a
series of complexes physicochemical phenomena [29].

In a system where the particles are represented by X;(i = 1,2,...,k), with local
concentrations ¢;(7,t) and velocities (7, ) a particle’s flow J; has an origin taken in
relation with a velocity of reference v.y.

j; = Ci(f(-j‘i = 17Tef); Uref = Zglﬁza Zgz =1 (31)

i i
with g; as a weight factor dependent on the choice of the reference system. The
reference system can be Hittorf or Fick and the reference velocity in Hittorf and Fick
systems are, respectively, the velocity of the solvents and the mean velocity of all particles.

Moreover, the velocity of reference may be ignored which is our case. The flow of particles
X; passing across an arbitrary surface S inside our system yields a diffusion current ¢;

fo= / Jids. (3:2)

The flow across a closed surface surrounding a volume V yields the integral form of

continuity equation
f JidS = — / / dyidV, 55
v

or using the normal vector n notation and the divergence theorem

17



?{fidﬁ:}{Jiﬁ-dﬁ:///V-fidV
Vv

i.e.

// (V- J+8tc,)—0

V- J; = -8 (3.4)

The later equation is valid when there is no other process inside volumen V who can
change the concentrations c;, or, broadly speaking, if there are no negative or positive
sources of particle X; in V.

Particularlly, if there are some chemical reactions ocurring on our system changing
the concentrations ¢; at a rate y;, the continuity equation (3.4) shows the generalized
form

dci(7 )

= + V- Ji(7, 1) = xi(7, 1) i=1,2...,k (3.5)
One typical example is the creation of an ion-pair
T b s gy, Bg= (3.6)
1 2 5 A3 A= .

with X;, X, and X3 the cation, anion and ion pair, respectively; k, k’ are the rate
constants of formation and decomposition, and K4 the association constant.
The particle sources for this particular example yields

X1 = K'cs — keyey
X2 = K'cs — keyep
X3 = kcica — K'es
()

The above relations (3.5) are valid in the following cases:

e If do not exist chemical reactions inside the volume V (; = 0) which implies that
(3.5) reduces to (3.4)

e They apply to any system having an equilibrium perturbation due to some internal
sources.

e They apply to systems with spontaneous fluctuations, where the variables must
satisfy the following relations:

( t) =< ¢ > +(SCi
Ji(7,t) =< J; > +4J;
i (F t) =< Xi > +0x; (38)
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where < ¢; >, < I >, < xi > are the mean values, and 6C;, §J; and Ox; are its
fluctuations, respectively. In equilibria < J; >=< x; >= 0 and 9; < ¢; >= 0, then
the fluctuations should satisfy equation (3.5) in the following manner

Bloc] + V- [6) = bxs); i=1,2,...,k (3.9)

e They apply to non-equilibrium steady-states systems having time-constant concen-
trations but not space-constant concentrations. Here the quantities < J. > and
< xi > can have non-zero values without any dependence in time and space..

e The relation (3.9) has validity even when external perturbations lead to relaxations.

The equation’s system (3.5) are far from being a closed system. To achieve this we add
a “constitutive relations” or “closure equations” who relates flows J; and concentrations
¢;. Needless to say that the reference velocity vanishes, at this level of discussion and the
resulting action-force particle’s velocity F;on particle X; could be considered proportional
to this force.

—

Ji(Tt)

(1)

where w; and F; are the generalized mobility of particle X; and the force acting on
~ particle X;, respectively. This force can be seen as a gradient of the electrochemical
potential per particle X;

II

 E)U(T, )
(7 1), (3.10)

/\
]

bl

"111/*3\1

t
t

?1

fi(p, T) = pa(p, T) + Fzi¢p

F = Faraday number

¢ = Galvani potential of the liquid
= Chemical potential

i

1
i= = N—Agradﬂi(P» T)

]'-Zi

1
= __v:ul(p7T) - NA

Ny

ol

Vo

where N4 is the Avogadro’s number. If we use the definition of the chemical potential
in terms of the concentration and Farday’s constant definition (F = e/Ny is the electric’s
charge magnitud per mole of electrons), we obtain the force is rewrited as

5 1
F, = A [VH?(P, T) + RTVln(cifyi)] — 2,eVo
A

or
F. = —kTVin(c;y;) — zieVe (3.11)
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with the universal gas constant R = kgNa.
Similarly, if we use kinetic theory Einstein’s relation (D; = w;kT) and the usual
expression between electric field and potential ¢ (E = —V¢) on (3.10), we obtain for the

expression for the flux

= = = Dic; =
Ji = c,-wiFi = C;Ww; [—‘kTVITL(Cl’Yl) + ZiCE:l = —Dchi = D,L-ci'Vln'yi + zZ;e k; E (312)
and for an ideal system
= D.c; -
Ji = —Di i Zi —Z——ZE 13
Ve + zie T (3-13)

In the latest equations the first term(s) concerns to the chemical forces producing a
Fick’s law type flow. The second term results from the electrical forces which are caused
by external and internal electric fields. Here the only electric parameters of interest are
the internal fields as a result of local fluctuations of electroneutrality. The external fields
and high frequency contributions as well as relaxations effecs (second order effects) hasn’t
been considered.

If the equation (3.13) is used on (3.5) we obtain the non-ideal diffusion equation

- DV - (Ve + eiViny; - fk—eTiE) — () i=12...k (314)

Bci(f’, t)
ot

or

3.2 Principles of normal mode analysis

A general strategy to solve a differential equation’s system (4.21) where flows and source
terms have been related by some “adecuated” closure relations, is to transform that system
into a set of algebraic equations using Fourier and Laplace transformations.

The main property of Fourier transformation is the effect on the derivatives of the
space variable 7 of the form

/gradci(r,t)exp(iq -r)dr = —iq/ci('r, t)exp(iq - ) = —igci(q,t) (3.15)
/divgradci(r, t)exp(iq - 7)dr = —q’ci(g, t) (3.16)
For its part, a time derivative Laplace transformation of a variable ¢;(g,t) gives
*.8e(g.1
/ —C%I{——)exp(—st)dt = sci(q, s) — ci(g,t =0) (3.17)
b :

where ¢;(g,t = 0) is the state of the system at time’s origin (t=0).

Once the algebraic equations have been established, their generalization in the (q,s)
space is carried out simply by retaining only the first order terms of the perturbations.
As a result, the linear system of algebraic equations of the type of
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M(q,s)c(q. s) = c(q,t = 0) (3.18)

in the Fourier-Laplace space is obtained. The matrix of M (q, s) contains the relevant
information from the input.

The boundary or initial conditions are stored in vector ¢(q, t=0). The response of the
system to a perturbation or fluctuation is reflected by the vector c(q,s).

c(q,s) = M~'(q,s)c(q,t =0) (3.19)

With a system of k starting equations of type (4.21), an algebraic system of k linear
equations is obtained. The determinant |M(q, s)| od this system yields a polynomial of
degree k in the variables s with k roots, real or complex, s; ... s

|M (g, s)|= (s — s1)(s — s2) -+ (5 — i) (3.20)
from which the reciprocal is obtained with the help of partial fraction expansion

1 Ay A,y Ayg
= + g —E 3.21
M@al G-s G-s G- B
The relevant property of retransformation is the exponential exp[—s;t] as the Laplace
original of (s — s;)~1. For stable systems all roots of |M(q, s)| have negative real parts,

indicating that all fluctuations or heterogeneities decay in time

k
c(q,t) =Y Bi(q)exp(sit) (3.22)

i=1
The roots of |[M(q, s)| are the normal modes of the system. With the exception of
a few cases there is no need to evaluate the retransformation of ¢(q,t) to the Fourier
original c¢(r,t) because all the relevant physics and chemistry can be understood in the
Fourier space. Linearization is generally the strongest limitation of the method. No ap-
proximations are needed when the starting equations are themselves linear. For practical
applications this hardly relevant case would occur for first order reactions of the kinetic
sources. Linear approximation is, however, always possible but may meet difficulties for

highly non-linear systems.

3.2.1 Normal modes

Let us now to exemplify the simple cases which gives single modes
The relazation modes (produced by chemical reactions) could be obtained by the first
order differential equation

de

=

They do not dependt on the Fourier-space variable ¢ and that’s why is not correlated
with a space propagation but only to a time decay

—ke (3.23)

¢ = coexp[—kt] (3.24)
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The Migration modes are correlated to convective or migrational transport leaded by
the equation

de(r,t)
ot

The evaluation of this pure mode involves migration in a uniform force-field F,
divF = 0, (e.g., uniform external electric field). The Fourier and Laplace transfor-
mations, respectively are

dc(q,t)
ot

Solving for ¢(q, s) (Laplace transformation of ¢(q,t)) and taking the inverse Laplace
transform

+wF gradc(r,t) =0 (3.25)

=iquwFc(q,t); sc(q,s) —c(g,t =0) =iqw Fc(q,s) (3.26)

clig,8) = %; c(q,t) = ¢(q,t = 0)expliq Fuwt] (3.27)

Is characteristic for a migration mode a root proportional to ¢q. A traslational move-
ment is defined for (3.27)
The diffusion modes are characterized by the equation

dc(r,t)
ot

We ca obtain the Fourier-Laplace transform of ¢(q, s) and the inverse Laplace trans-
form

— Ddivgradc(r,t) = 0. (3.28)

_c(q,t=0)

da.5)=~rap et = c(g,t = 0)exp[—¢*D1]. (3.29)

A diffusion mode is characteristic for a root proportional to ¢>.

3.3 Coupled diffusion of a multiply associating non—
ideal Case

Generalities

The subtance’s movement process (atom, molecule, etc.) from higher to lower con-
centration on a certain region is called diffusion. At first order this process is ruled by
Fick’s law J; = —D;gradc;. the different types of diffusion are:

o Self-diffusion (or tracer diffusion). It is a special case carried out in pure sub-
stances or a same constitution solutions where the substance’s particles display an
spontaneous mixing under equilibrium without gradients of concentration or chem-
ical potential. The participating species in this particular diffusion have different
physical characteristics but same chemical properties like radiactive isotopes (iso-
tope tracers) wich can be observed using various techniques. The closed capillary
technique is a common one to measure self diffusion coefficients.
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e Chemical diffusion. It is a non—equilibrium process that takes place with the ex-
istence of gradients of concentration or gradients of chemical potential in order to
produce a net transport of mass.

e Coupled diffusion. It is achieved when we pass from self-diffusion to chemical diffu-
sion. This process takes place when there are concentration gradients on a solution
with some tracer inside. ‘

Theory
A multicomponent non—ideal electrolyte solutions requires, for the representation of
its coupled diffusion, a set of equations of the type of (3.9), x; #0,i=+,—,1,2...,N

oC;

ot

where the following notation is used: for the mayor electrolyte, + is for the cation,

and - is for the anion. For the species: 1 is for tracer, 2 for dimer, 3 for trimer,...,N for

N-mer. The flux J; of the ith species at position x and time ¢, can be derived according
to the linear transport theory to obtain

+ lej; = Xi (3'30)

J; = —C;D;Viny; — D;VC; + BD;zeCiE, (3.31)

where D, are the diffusion coefficient, 7; are the activity coefficients associated to each
species and z;e and the charge of the i-th species respectively. E is the electrical field
created by the diffusion of the ions originally forming the salt.

Explicitly fluxes associated with the major electrolyte are

j+ = —C+D+Vln’y+ = D+VC+ + ﬂD+Z+BC+E,
J. = ~C_D_Viny_ — D_VO_+ BD_z_eC_E. (3.32)

The electrical field E is calculated demanding local dynamical electroneutrality
vizpdy +v_z_J. =0 (3.33)

This implies

—

z_v_(—C_D_Vliny- — D_VC_+ pD_z_eC_FE)
= e (0 D Vb — D NG 4 BDip 6O B)

which could be writed for E
1 kT

ZiV+D+C+ + Z%V_D_C_ ?
[24v4.C D4 Vinyy + z2_v_C_D_Viny_ + z,v,D,VC+2z_v_D_VC_]

E=

or using the identity (with v; = 7;(Cs)) Viny; = VC0c, Inv; + VC_0c_Invy;
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- 1 kT

E = 2_2’_1/+D+C+ i ZE[/_D_C__ ?[Z+V+C+D+(Vc+ac+ln7+ + Vc_ac_ln’)q.)

+2_v_C_D_(VC,0c,Iny- + VC_0¢_Iny_) + 24vy D,VC, + z_v_D_VC_]
Considering 0c, + 0c_ = d¢, and C;. = C_ =~ C,

] kT
&= (v, D, + ZEV_D_)e[Z+V+D+Vcsac,ln'y+
+Z_V_D_staCsln7_ + Z+V+D+ VCCS + Z_l/_D_ VCCS]

KT zyv4 Dy + 2_v_D_VC, " kTVC’ z2,vy Dy Oc,Inyy + 2_v_D_0¢,Iny_
e 22v,D, +22v_D_ C, e 22v,D, +22v_D_
In our case we have a 1:1 electrolyte (24 = —2_ = 1 and vy = v_ = 1). The electrical
field equation has the form

(3.34)

E=

(3.35)

F_KTD,—D_ Vi, kT /e Oy, ) Oy

- B0 B G D, +D_ 0C 00,
On the other hand, to obtain the source terms and to consider association first of
all it is necessary to know the equilibrium equations (that ones) who gives us the N-

mers formation. Such a relations could be written as (where T= Tracer and A= Anion,
T A=Dimer, T Ay=Trimer,- - -,7 Ay_;=N-mer)

VG, <D+

e

T+A=TA
k)

5@

TA+A2TA,
kK

LV-1

ThAmaE A = Tl (3.36)
k(N—l)

B K2 il
where I(l = ;(1—), [(2 = k(_2) & o I{N—l = k—(m

The source terms includi}lg the activity coefficients are given by
x1 = k[T A] = KDy [T)[A]
x2 = KV yvalT)[A] — kO[T A] + K3 [T A,
— K974 A (4]

xn = By 17a[TAn_a)[A] = & Dy [T An_1] (3.37)
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Moreover, it is important to say that we are working with a 1-dimensional spatial
system such that we are "following" the diffusion process in only one direction as time
goes on. That’s why we need to write expressions in terms of this restriction, like (3.15) or
the eq. for the electrical field. Let’s choose the spatial variable as x and let’s start writing
the equation (3.35) for the electrical field in terms of that variable and substituting in
the expression (3.31) for the flux

g _ T D.—D_8:C, = kT/e
T e Bl 6 T Dt

oln dlny_
9:Cs <D+ ac%_D‘ ac? )

and

i = =0 D8 Iny; — Di0,Ce+ BDizeCiEe (3.38)

Then if we subtitute eq. (3.38) and (3.37) in (3.30) we have

oC;
TR 0, Jiz = Xxi
oC;
5 + 8;{—C;D;3;lnv; — D;0;C; + BD;zieC;E;} = x;

(where as usual (V - fl)z =g Ja)
or

oC;
ot

= Di8,Ci0lnry; — Diciaﬁln% - DiafCi + BD;2e0,C;Ey + BD;2eCi0. EL} = X
(3.39)

As can see, in the third-left term of the above equation there is a second derivative of
In7y; and in the fifth-left term will appear a similar expression. To obtain that cuadratic

derivative terms, let us remind that we have the one dimensional equation 0J,lny; =
0,Cs0c,Inv;. So, then

0ny; B i 0C dln;
dr2 Oz \ 0z 0C,

B 8*C, dlnry; e BCsi oln;
~ 0x2 90, dr dx \ 9C;

or

Pny;  82C, dlny; N (acs>2 O%n;

or2  0r2 0C, or ) oc?
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Now we can get the partial derivative of the electrical field 0, F,

O0E, 0 [kT D,— D_03,C, kfje Olny, dlnry_
O i [ e Dy +D_ C, T D,+D_ 0 <D+ ac, ~P-7ac,

_kTD,-D_ [axcs (2:C) ] L ke e (D+%’g_+_ D 3’”7-> (3.40)

RN M E C? B =" - aC,
kT/e 0lny, 0nry_
e -B. 41
g +D_( ) ( T oc? oC? )

From (3.37), (3.41) and (3.39) we have

aa(f — D;8,Cid,Iny; — D;Cid2ny; — D;82C;
+BD;zed,C; [g gi J: g: 610? - fi’;/ Z_ 8,C, (D+ 8érgs+ D ngs_ﬂ
epDzec (L DDz 020 (OO e e, (p e )
%(ax(’s)z (D+ 82?:? - 82?:;“)} = K yalT Aica][A] = KE DT A

or doing some algebra

aC; C; C, dlny; [ 8C,\? 8%ny; dC; dC, dlnry,
B g O e, | < ax) aC? Bz 0z 9C,
oC, D, — D_ 1 8C, 8c;, 1 8C, (.. dlnys Alny_
= D= s = Dl = 1.
“or D, +D_C, 0z oz Dy+ D_ 0z (D+ ac, ac,

_ 2 2 2 2 2
DGy, D, —D_ LB Cs 1 a{cg DG, D, 0°C, dlny, 5 *lny, (9C,
Di+D_\C, 8z2 C2?\ 0z D+ % @2 20, ac: ox

D_ 0%C, dlny_  Plny_ [0C,\? s o
+ DiCiz D+ D_ ( 02 867 " aCZ < oz ) ) + £y 17T A][A] - K V(T A

(3.42)
For the major electrolyte (the salt), we can obtain the diffusion equation using the

expression (3.39) for the flux with the electrical field equal zero (because the salt generates
that field) and without sources to get

C, 8C, (dC; Iny, 8%C, dlny; . (9C,\* Bny; 0°0,
o Do (az acs) B < 522 8C, | ( ax) aC? ~ D =0

i.e.
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ot 02 oz

2 2 2
o 88 _p %G 8%C, (1 +Csaln'ys) LD, <8Cs) [[ﬂn'ys Lc 0 ln’ys] (3.43)

oC, aC;, * 8C?
with Dy = f,D :L% and represents the Nernst-Hartley diffusion coefficient of the salt.

The system of equations that we need to solve are the sum over all species, i.e. the
sum from i = 1 to N of the egs. (3.42)

ZDC

N N
—ZD-Z,BC b = - 1.5, 5 L0G1 9, () dlnrs Oy
8r D, + D_C, oz dr D, + D_ 0z ac, ac,

D,-D_(1&C, 1 (3C,
_ZDC%D++D (cs 012 02(07[;))
- XN: Dee D (#C8Imy, Py, (3G
L UED Do\ 022 aC, T 9CF \ Oz

N 2 N
D_ 82C, Olny.  &?lny_ [ 9C;
Di 1% i .
+; CZD++D_(8302 ac, t Tace (81;>>+;Q (3:44)

ox? 0C; Oz oC? dr O0r 0C;

82C, dlny;  (9Cs\? 8%ny; N a0, 6C, dlny;
ny ( ) m]JrZi ny

i=1

From the last equation we can see that to guarantee mass conservation it is necessary
to have E Q; = 0. To obtian such a sums (from the above equation) we note that
species concentrations can be writed in terms of the binding constants and in terms of
the salt concentration according to the mass action law (MAL)

712Ca
11C174Ca

73C73
12C274Ca

Kl e
K2 =
_ %i+1Cin

" 4iCivaCa

YvCn
7N—10N—1‘/ACA’

Ky =

solving for the species’s concentrations
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_ KimC1v4Ca

Cy
V2
_ Ky7Cyv4Ca ., KiKom (74Cs)?
Cs=—"—"7"—""—"=0C1
73 3
_ KiviCivaCa _ , KiKs---Kioim (7aC5) "
R 1. i o s
Yi+1 Yi
_ Kn_1n-1Cnv-174Ca _ , KiK3 - Kn-1m (74Cs)"
C’N == - Cl )
TN TN
ie.
Cy = C14,Cs
Cs = C,8,C?

Gy= 8. 701

= i O 3.45
N-1%s

where by convention ﬂ; == ﬁﬂ;—%‘ and B; are the cummulative equilibrium constants
defined by 8; = [IX, Ki = K1 - K2+ K i - K.

The next step is to analize term by term the sums of eq. (3.44). Note that this term
could be rewrited as

N N
oC; 0 0
- = 4
i 8t; ‘ 8tCT°‘ {956

where Cr,; is the total tracer concentration. The first sum is given in terms of the
partial derivative with respect to time of the total tracer concentration as we want. The
total tracer concentration by convention is

N N-1
Cra=C1 Y BiaCi =C1Y_ BCi=Cilh (3.47)
1=0

=0

N-1
where we define A; = Z ﬁ;C’;. The above relations implies that
i=0

0 0 0 0 0 0N, 0C,
ECTor = a(clAl) = Alacl + ClaAl = Alaa i Cl—‘()_C’; ot
oC, oC,
= AIW + C1A, 5
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with the next definition Ay = %é—sl Doing some algebra this quantity becomes

N=1 N-1 i
A, = 01 _ 05 021 By ﬂz Z [ i ,acs] (3.48)

oCc,  9C, 30 *9C;

1=

Analizing the derivative terms one by one we can see that the second derivative term

is obtained easily %‘l = 4C*"!, meanwhile the first term requires some little algebra

BB ni 1 i - i
,Bz ( A ) =B — ((¥40c, 11 + Mivy '9c,v4) Yirr — MYaBc,Yir1)
80 Yi+1 7i+1

: ﬁi’YﬂA [30371 g 9c.¥a _ 0o, i
Yi+1 N A Yi+1

] = 51’ (Ty +iT4 —Tit1)

where we define ['; = (a%) /7i- On this way A, is

ZC’ (Ty + iTa — Tipa) + BiiCHT

N-1
= Z Ci1B;[(T1 + ila — Tit1) Cs + i
i=1
rewriting
Z CiBipi [(T1+ (i +1)Ta — Tiy2) Cs + (i + 1)) (3.49)

The next term to analize is the first-right term of eq. (3.44)

0, s e
Z * Oz? 83:2 Z DiC; = i Z D;C18;_1C;

i=1

_&c : 8ZC’ 1
IZDmﬁZCUrClZD = 10; L Bi_,) (3.50)
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2 2
Z BC aCIZDH_lﬁzs
=1

.II
N s 2 -
82C, 06, (0C\*3%8_,\ .. [&C,8C  (8C,\?HCitY

+C1;D‘Ka 2 4, +<8x) acz )% T\ Bz ac, "\Br ) Tacr )P
62(:1
a$2 ZD‘L-}'Iﬁz

=0

9°C, Haﬁ i IC\*x= 1y i1 9B
+Ci ZDC Cl(ax) ZD,-CS 07
3202'—1

826, g DG aC, ;
s ZD, 156 +Cl<ax> ZDi e

where by convention we have

N 2 2
Z Dza C 8 Cl Z Dz+1ﬂz

or:  Ox%

i=1 =0
+Ci— Z Dl 80 ( ) Z DinCizzy 02
-1 2N 1 ;
,BC ,02C:
Di1p; BC ( ) Z Ditq ) (3.51)
i=0 s

with ;—; = -@gx—czi Bgs - (%) ac? Moreover, let’s define the next delta terms

N
A=) D ,CT?

i=1

| N-1
. Ag = Z Di+IB;C; (352)
=0
;9 = (B.CH
A4 — BCS = 8(" Z D’L+1ﬁ1, Z DZ+1 a(v
N-1

=Y Din [ﬂ;(rl +ilp —Tip)Cit + 5;730;"1]
ik

1

similarly, making the index runs from zero by convention, like the other delta terms

‘ 30



N-2

Ay =) Diy2fiyCil(T1 + (i + 1)Ta — Tipa)Cs + i + 1] (3.53)
=0

where the second derivative element is

96, _ OBy +iTa—Tipy)] _ 0B, Bl iy = Ta)l s

g r z. .
ac? ac, =ac, 1+ la—Tu) + ac, bi
= (Bi(T1 +14Ta — Tiz1))(T1 +iCa — Tipr) + (T12 +iCaz — iv12)B;
= Bi[(T1 +iTa — Tis1)® + (T2 + iCa2 — Liy12)] (3.54)

and the term

82Ci  Q(iCiY)
6c2 ~ ~ ac,

=i(s—1)Ci?

Now we can define the delta parameter

0N, 3N, N 2B 0 o8 ,oC:
A7:_4 3_2 AT (ﬂz s) <Cz :8 3)

aC, — 9CT T & ac, ~ ac, \%ac, TPiae,

B, _8CioB,  ,&C
- Z Dia [ sac2 Y250, a0, Th acg]
N-1 ‘
By {C;:Bi[(rl +iC4 —Tip1)® + (T2 + iTas — Tip12)]

=0

+2iC1B,(Ty +iT g — Typ1) + Biii — 1)02‘2}

N-1
— Di+1 ;C;;—z {CE[(FI + (Z + l)FA — Fi+1)2 + (Fljz + (Z + 1)].1‘4,2 — Fi+1’2)] (3 55)
i=0 :

+2(8) (T + (i + )Ty — Tiq)Cs + (i — )i},
Then
NDa’ZcZ“AaC1 onFCe o A (90N g
; ' B2 333:2 1482+ T o (3:56)
Next element of (3.44) to develop is
0?C, Olnry; BN 3ny;
ZD G az2 a0, (6:6 ) oC? 5.5%)
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If we analize that expression by parts

N Bln%

i=1

defining

Do =3 DG o anﬂ, (X ZDMﬁ, Tous

=1

and

N 2 2 N
oC O%lnry; oC , - O%lny;
iCi| 5 - === Di(C1B,_,Ci! )
). Do (ax) aC? <8x) ; (C1BiaC:7) aC?

i=1
oC. = ; i_lazln% i
-o () et on ()

using the definition

al b1 0%y — 0%y iy goze
Ag = Z DifiOF 3ce Z D;1BiC: a2 Z D;i1B;Ciliv12
=1 s =0 s i=0

Substituting (3.60) and (3.58) on (3.57)

9%C, Olny; aC,\? 8%nv; 92C, oC,
S 1 S 1 A
5% 8C, +<3x) acz |~ "a2+01A8(an)

Examining the following term from equation (3.44): Z D; %i’ 93%852'
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> DiCis ZD (1B Cy ) a;aﬂ‘_lq ‘56, = Cil

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)



i 80,00, 8ln7, ZD 015 ,Ci71) dlny;

£ hz 9z 9C, z- ac,

_ (9 zi D,a(clﬂg_lc:*)alnw
-\ Oz : aC, oC,

i=1

e 8ln'yl i-19C1 8(Bi,Ci™h)
_<33:)Z (5 1% 3¢, +G—5c, )

0C; ocC 5 . 3.63
:<8z){ IZDB”C T e

N
+Ch Z DiIC28, [Ty + (i — 1)Ta — 0)Cs + (i — 1)]}

1=2
AN
—(8ac> {ac A”CIAQ}

e aC,\?
_EEA”C‘((%) Bo

=1

where we use the definition

N
Ag =Y DiINCI?Bi_y[(T1 + (i = 1)Ta — T9)Cy + (i — 1)]
=2
oy | (3.64)
Ao =Y Diy2Cif; 41 Tival(T1 + (i + 1)Ta — Fig2)Cs + (i + 1))

=0

Continuing the analysis of the equation’s terms of (3.44)

N
oC;
2 Dy
i=1
B, < oC,
1 / i— G— s
:3; ; Diziﬁi_le . + Cl ( ) Z Dz zC 2ﬁ1 1[(F1 + (l = 1)FA — F)CS + (’L - 1)]
oC, 0C,
—WA5 + Ci o (3.65)
with the delta’s defined as
N A N-1 .
5= Z Dizf; ,Cy" = Z Dit12i418,C; (3.66)
i=1 i=0

and
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A= Dz C [Ty + (i = DT —T)C, + (i = 1)]
=2
N-2

= Dis22i426i41Cil(T1 + (i + 1)Ta — Tiy2)Cy + (6 + 1)] (3.67)
=0

The last term to examine is

ZDcz, EDZZ(CIBZ N oa CIZDz,ﬂ C1) = C1As (3.68)

i=1

obtain

which,

Substituting the equations (3.46),(3.56),(3.58),(3.62),(3.63),(3.65),(3.68) on (3.44) we

ICrot 02C, 520, 0C,\ 2
8t A3 a 2 + CIA4 8 2 CIA7 ( ax)
820, aC, 0C, 8C, o
Ry +01A8<ax) * 5z oz A”Cl(az) =
oC, Lo _ 180,
~ (G At Oy Alo)D++D C, oz

oCy aC; 1 oCs dln(vy) . Oln(y-)
(g Bs+ O A =55, (D+ ac, ~ P-"%c,

122G, _ 1 (3G
Cedx* L2\ 0z
D 92C, Oln(yy)  0%n(vy) (0C,\*
- ClA5 D P + 2
++D_\ 022 0C; 0C? ox

D 82C, dlny_  9%n(y-) (acs)2>

D, +D_\ 322 ac, = ac?

after grouping like terms

A
=il 5D++D

Oz
D.—D.
+

+ C1As

= (3.69)

OCrot = 9%Cy CA, e

§ aC, \?
5t 3 T MGz +ClA7<ax>

52C, aCc\? a0, oc, 9C,\?
+ il 01A8< ‘)+ : A6+Cl( )Ag

oz or O ox

aC, 8C, . D,—D_18C, D,Iy—D_I_aC,
— (&

(Gz s+ O b G4 VD, 7D o)

ox ox
8203 (_ D+ R D_ i . D+F+ - D_F_)
3:62 D+ + D Cs D+ + D_

L . i e 0.0
+CIA5( ) [D+ 1 _Dilay = DTy, ] (3.70)

+ C14s

8.1: D+ + D_ 03 D+ + D
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And finally, using eq. (3.47) we obtain the total tracer diffusion equation written as

8Cret _ 0%CraAs  8°C, Cro AzAg
ot 02 A, T om Ay \Dtt e A —1
8C,\* Crot Az\? AAe  Asdy ,  A3DA,
s g T (LA ¥ Aoy = == = S}
( 8m) Al 7+Ag+ 9 A10A+A5.B+2<Al> A3 Al + Al A Al 805
0Cs 0Crq 1 ADYAVS
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N-1
A=Y B(C.)
1=0

= / ! o} '754+1’Yl
Ay = C, |(1+1)+C; In
2 IZ;ﬂH-l [( ) 805 Yis2 ]
As = Z Dy418,C:
=0
N-2
0 ’Yl+171]
Ay = [4+1) + Cy=xln-2
‘ ; l+2ﬂl+1 [( ) 303 Yi+2
N-1
As = Z Dt+121+15105
1=0
N-1 P
= -
AV ;Dl—}-lﬁl *aC, Yi+1
N-1
G 0%lny Plnys  Plnyg
_ -2 + 2
A7_§Dl+1ﬁl(}s [( sz T (D 5e ~ e )Cs
dlny Olnya  Olnyip ’ 2
(acs H+D5em~ e, ) ©
_( dlny Olnys  Olnvy4q .
+2z<acs +(1+1) aC. ac. Cs+i(i—1)
0 ln% 1
1 +
ZD1+1510 ac?
e olny, Olny dlny dln,
- " +2 1 YA O0lnYi4o
AQ - lg(; Dl+2/3l+105 803 |:CS ( BCS + (l + 1) aCS 803 ) + (l + 1):|
N-2
dlny, dlnya  Olnygo
Ay = ;Dl+2zl+2ﬁz+1c [ ( aC, +({+1) ac,  acC, +({+1)
Dy Do [(D“‘ Pl ¥ 0% 5a, 2= o
% - 1 B 1 &lny, O%lny,
! B_D++D_ [(D+ D_)Cs T aC? i C?
. !
) B = /3171%
Yi+1

(3.72)

Similarly, the diffusion equation for the salt has the form
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oC, 82C, Ol OCs\? [ dlnvs Olny,
o - Do (HC ac, )+D3<ax) <acs S acg) &)

As a particular case, for an ideal solution we have

—

J; = —D;VC; + BD;zeC;E, (3.74)

with the electrical field taking the following simplified form

E:HDI_DQVCS

€ D1 + D2 Cs (375)

and the diffusion equation for the ideal case that considers formation of complexes to
arbitrary order is

aCTot - azc'Tot A3 azcs CTot A2A3
ot - 6z A oz A, \(eT AR
8C,\2Crot A, AsDy . DgBA,
—ApA+A
(ax) Ay | owalE SB+2<A1) ST N Ree,
0C, 0Cry 1 (. AgAs |
e (2 x +A5A) (3.76)

where the expressions for A; and coefficients A, B are obtained from (3.72) considering
~v; = 1. In the same way the diffusion equation for the salt takes the form

aC; 0,
3t - DSW (377)

A difference of the tracer concentration, for the salt, ideality implies linearity.

3.4 Diffusion coupling and the ideal case

The complete diffusion equation, for the ideal case of the i-th ion obtained from the
continuity equation considering that all the activity coefficients v; are equal zero is given
by the following expression

C _ [, #Ci_ [, 0CiDy=D-13C, . Di=D_(18C, 1 (3G, ’
ot Tt ox? Yor D4+ D0, O iz ‘D, +D_\C, 8z2 2\ oz
+ kO[T A [A] — KO[TA] + K5V [T A — ST AL [A] (3.78)

where the source terms for i=1 and i=n, respectively, are
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Q= k[T 4] - KD [T](4]
Qn = K VT An_o)[A] — KV V[T Ax_]

On the other hand, the diffusion equation for the salt has the form
oC, i oA

ot Ox?

38
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CHAPTER 4

NORMAL MODE ANALY®SIS FOR
COUPLED DIFFUSION

4.1 Normal-mode analysis for coupled diffusion of a
multiply associating non- ideal system

Since the first appearance on Schurr’s work, the normal mode approximation technique
has become a tool of choice for the study of transport process, specifically to study the
diffusive processes on such a systems who are in stationary states subjected to small
perturbations. NM treatment linearize the transport equations considering an arbitrary
physical property, A(7,t), composed of two terms: an equilibrium term A (t— oo) and
a non-—equilibrium or perturbation term dA(7,¢). Linearization is implemented keeping
only the first-order perturbation terms in the equations.

The physical property to analyze is the concentration of the i-th species C;(7, t), which
we’ll express as C;(7,t) = C° 4 6C;(,t). We implement NM approximation given the
spatial-temporal evolution of the concentrations. The technique, as we mention above,
includes to retain only the linear terms on 6C;(7,t). Using this approximation on (3.71),
a (linearized) diffusion tracer equation is obtained

90Cr, , 0%0Cr, . 0%C,
51 - - Totjgxz—t Orot 53 =0 (4.1)
The involved parameters are defined as
AOO
=
Tot A(l)o
A AP g AL
= —C2 | -2 S (4.2
Aot Tot (A&x’ ATO + acsc AC1>O> \ )

v

where we have used eq. (3.72) introducing the notation A® = A;(Cy = C), i.e.
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n—1
A=) gE(CR)
=0

n—-2
A=Y B (oY [(z +1+CP (
=0

n—1
Az =Y DB (CF)
=0

n—2

/00 (1ol 00 0 7f4+171
D=3 DuabB(C) |41 + 07 (o2

=0

oln
AG = ZDHlﬁz Coo)l ( agylﬂ)

Dy~ 0, - 1
D.+D_C® D, +D_

i

A=

The equation (4.1) is solved by using both Fourier transform on space (denoted by an
asterisk) and Laplace transform on time (denoted by a tilde) with the help of equation

(3.16) and (3.17). We obtain

ICtu (gt = 0)

0 ’qu“?’l)
9Cs  M+2

c,:cg]
cs=cg]

8[”’)’4{.
s=C%° = ( 9C;s )

olnry_
aCs ) la

Yi+2

Co=Cg°

] 3
Cy=Cg°

* 2/ V%
a*q*C;(q,s) (4.4)

5~C”§‘ot (q’ S) =

Similarly, the major electrolyte has a diffusion motion independent from the tracer,
expressed by the next diffusion equation

oC, 0%C;
ot = D 0x?

defining D} = D, [1 + 0 (%LCZS)

The solution of eq. (4.5) in the Fourier-Laplace space using the equations (3.16) and

(3.17) is

C: = Ci(g,t = 0)/(s +¢°D;) (4.6)
(4.4) give us

Substituing eq. (4.6) on

6C;ot (q'r t=

(S 52 qu’;"ot)

1+C°°<

(S + qu;’ot)

olny,
oC,

Cs=cg°] ’

L9,
CJ = D5 (4.5)

0) ., a*¢’Ci(q, s)

=§E) 4568 (4.7)

6~C’;"ot(q7 3) =

(s + 4> D)

(‘5 +q DTot)

with 6C;%) as the self-diffusion propagator of the tracer, while 0C;\7” describes the

migration of the tracer in the diffusion

field of the salt.
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Let us note that we are concerning with the tracer migration part, because it takes
into account the tracer diffusion from capillary part B to part A.

Using a Fourier series expansion for Cr., we get

4 ar,C% sin(gx) 2 e 2 o
50 ’ t = —— Tot s [ _q2l+lDTott —_ p 92 1Dst:| 48
Tl ) =~ e~ Dry 21 1 ¢ G5

Substituting (5.2) in the the activity expression [30] considering a proper origin of a
coordinate system, we get

e LE MIC) @ S g
P8 = 12D - Dy 1 '

Tot 1=0

/0 (f-(2) = fo(z)) sinl(2l + 1) 2]z (4.9)

1
with [ = / (f-(2) + f+(2))dz, ¢(z) a geometry dependent function and Cf., the initial
0

tracer concentration.
The particular case which considers an ideal solution could be written as

00C o , 0%0Cry . J°C.
5 Pra—pgnm T ASC%otW =0 (4.10)

The terms A% and D%, are gived by (4.20) where A; = A® and +; are equal to the
identity.
The linearized-ideal diffusion equation for the salt has the form

oC; 0,
o = Digsy (4.11)

The coupled equations (4.10) and (4.11) are solved in the same way as above, obtaining
similar solutions for the tracer concentration and activity expressions (5.2) and (4.24),
respectively and writing Dy in the place of D (apart from the later considerations on
the ;’s and A;’s).

4.2 Normal modes and the ideal case

Now we made use of the normal mode approximation for the specie’s concentrations
C; = C?+6C; , with C? = concentration at infinite dilution and 6C; = non—equilibrium
perturbation. Doing so, the next general diffusion tracer equation is obtained

96Crs, . 9°Cra
ot Tot ™ 5g2

2
o 9Cs _ 0 (4.12)

+ A;CTot o2
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} (4.13)
Cs=C9

with

n—1
A=) B(CY
=0
n—2
Ny =) Bl(CH(I+1)
=0

n—1

A3 = Z Dz+1ﬁ?(02)l
=0
n—2

Ay =) DiaBla(C) (I +1)
=0

n—1
AG = Z Dl+15?(Cf)l
=0

Dy =9 1

= — 4.14
D, +D_C? e
The equation (4.19) is solved in the Fourier-Laplace space giving
SC’;M, (qv 5) =
50;1“((],15 = 0) + A;C%otqQC: (q’t = 0)
[s + ¢* Dty (s +¢* D7) (s + ¢* D)
= 803 + 507 (4.15)

where 60;(:2 = autodiffusion term and (50;.5:?) = 0Cry Total migration tracer term,
Crot = Cy + Cy + --- + Oy = Total tracer concentration and, by convention, we use the
notation 1= Tracer, 2= Dimer, ..., N=n-mer.

At this point, we are concerning with the tracer migration part, because it takes

into account the t(ra;:er diffusion from capillary part B to part A. Using a Fourier series
*(m

expansion for §C,, , we get (¢ = wl/2L)

N * 0 o0 .
Cra@t) | _4_AC3  $s02) [ g,050 _ o-ehnos] (4.16)

Cs. D - Dy, = 2A+1
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Finally we obtain the activity expression in terms of the concentration [20]

14 A:Cg = e_D’;‘otqlzt — e—D;qlzt
p(t)_T?D;—D;tZ ST
ot =0
1
/ (f-(2) — f+(2))sin[(2l + 1)gz1dz (4.17)
0

with

= / (F(2) + f1(2))dz
(4.18)

where fi(z) = capillary geometry dependent function.

4.3 Normal modes and the non—ideal case

Now we made use of the normal mode approximation for the specie’s concentrations
C; = C® +6C; , with C{° = concentration at infinite dilution and dC; = non equilibrium
perturbation. Doing so, the next general diffusion tracer equation is obtained

65CTot * az(sCTot * 6203 =0

TR T R O = (4.19)

where Crpy = C; + Cy + --- + Cy = Total tracer concentration and, by convention,

we use the notation 1= Tracer, 2= Dimer, ..., N=n-mer.
D* . — Arrr
Tot
Af

} (4.20)
Cy=C?

A A 0 A
¥ _ 0 l__v v 111
a’Tot - C’Tot { AI AI A + (803 A] )

with
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n—1
NEDI: (¢
=0

n—2
A=) Bl (C)
=0
o ,}/l+1,),1
[+1)+ CS (—lnA—)
( ) ICs 42 /lcy=co
n-1
Apr = Z Dl+1ﬂ?(cg)l
1=0
n—2
A = Z Dl+2ﬁlo+1(cg)l'
1=0
I+1
(+1)+C° ( O gl 71)
aCs Yi+2 Cs=C?

n—1
0
AVI = ZDl+LBIO(Cg)l aC ln71+1
1=0 s Cs=C7
D,—-D_1 1 d
A== — D_ | —Invy_
Dy+D_C? i D, +D- [ ac, ) Co=CY
=i (—d—ln7+> (4.21)
9Cs Co=CY

The equation (4.19) is solved in the Fourier-Laplace space giving

Sc}ot (q’ '5) =

0CTo(g,t = 0) a*¢*C;(q.t =0)
[S + qu}ot] (S ki qu’;"ot)(S + qZD;'at)
= 6C3 4 sCpm) (4.22)

where 60;53? = autodiffusion term and 60;(021) = 0Cr, Total migration tracer term.

Here, we only need to consider the tracer migration’s part, i.e., the part who takes
into account the translation of the tracer from capillary part B to A. Using a Fourier
series expansion for dC'r,, we get

* 0 oasd .
5CTot (.’L’,t) = —é aTOtCs sm(ql:c) [e_ng»lD';"ott — e—nglD;t:' (423)

Dy — Diyy = 20+1

Obtaining the activity expression in terms of the concentration [20]

L il
o(t) = / 6Crala,)o(a)de/ / Chu(o) (1.24)
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where ¢(x) = geometry dependent function and C9,, = initial tracer concentration.
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CHAPTER 5
RESULT®S

5.1 Experimental

It is worthwile to conduct diffusion experiments on an ion which is a pure 3 emitter in a
cell made of scintillating plastic [9,10]. On the other hand if the tracer is both a 8 and a
~ emitter then it is necessary to stop the ’s so that only the « emission can be analyzed.
This was the case in the present work in which the diffusion of zinc(II) was investigated.
The commercially available radioactive form of this ion, ®Zn?*, is a 8 and 7 emitter.

Thus the experimental technique utilized in this work was an adaptation of the closed
capillary method [20]. The cell consists of a silica capillary (sealed at its bottom end) of 3
cm length and ca. 0.8 mm inner diameter which is introduced into a bore drilled through
the center of a cylinder made of scintillating plastic (see Figure 5.1). The capillary (whose
wall is ca. 1 mm thick) has the property of stopping the S+ particles of low energy (0.33
MeV) emitted by ®*Zn?*. In order to avoid capillarity problems, the silica capillary was
filled on a distance of 2.8 cm (i.e. 2 mm below the top of the capillary). Indeed, filling
the capillary with liquid up to its mouth was observed to result in a significant loss of
liquid in the course of the experiment. The top of the capillary was sealed with a piece of
plastic paraffin film (Parafilm) to prevent evaporation. The silica capillary was adjusted
within the plastic one so that the mid-point of the liquid phase coincided with the top of
the scintillating plastic cylinder.

The diffusion experiments were conducted as follows. The bottom part of the capillary
was filled with a solution containing 1 M LiCl, 10~* M ZnCl, and radioactive zinc(II) in
tracer amounts (of the order of 10™® M). Then, the top part of the capillary was filled
very carefully with a solution composed of 107* M ZnCl; and the same concentration of
radioactive zinc(II). The solutions were introduced in the capillary by using a small plastic
Pasteur pipette bearing a thin flexible Teflon tube at its end. This device allowed us to
accurately handle very small volumes of liquid, of the order of 8 uL each time (half of the
capillary). Next, the cell was introduced in a f radioactivity counter which counts the
photons emitted in the scintillating plastic under the effect of the v rays. The experiments
were conducted with continuous monitoring of radioactivity, at a temperature of 25 + 1

g &
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Figure 5.1: Sketch of the diffusion cell

Because it is expected that the  rays can have only one efficient conversion in the
plastic, it was shown [20] that the probability of conversion of a v ray is proportional to
the length of plastic it crosses. This property allows an explicit calculation of the counting
intensity as a function of the tracer concentration profile in the capillary. Then one can
measure self-diffusion coefficients of y-emitters with this technique (as was done before
in the case of a radiolabelled biological molecule [20]), and study diffusion processes like
diffusion coupling.

The relative variation of the radioactivity intensity measured by the counter may be
written as, @

I(t
)= =gy ! (5.1)
with 7(t) the measured intensity at time t, so that p(t = 0) = 0.
With the notations of Ref. [20] we can write straightforwardly,

Jol0-(2,)f-(2) + 04 (2, ) f+ ()] d= 52)
Jo lf-(2) + f(2))dz

in which z = 2/L, f_ and f; are functions proportional to the ‘efficacy’ of a y-ray emitted

at position z (f_ for z < 0 in the bottom part of the capillary and f; for x > 0 in the

upper part), and 0_(z,t) and 6, (z,t) are the relative excesses of tracer concentration in
bottom and upper parts of the capillary, respectively, that is

pt) =

(5.3)



where §C5) = C;i) e Cq(f) and Cj(f) are the tracer concentrations for r < 0 and

x > 0, respectively, and C’}O ) is the initial uniform tracer concentration in the capillary.
Expressions for the functions f_ and f, were given in ref. [20]. The concentration of the
tracer is calculated below by using NM and FD techniques.

5.2 Application

As a case of study, we consider an electrolyte aqueous solution of ZnCl, at 0.02 M on
LiCl at 1 M, where Zn* is the tracer (* is for radiactive). We consider that the Zn***
ions can bind up to four Cl, i.e., considering complexes formation up to pentamers.

Solution of the coupled diffusion egs. (5.5) using (5.6) was obtained using a finite
difference algorithm, with a number of cells, N=200, and a time step shorter than the
mean diffusion time between contiguous cells for the faster ion, in such a way that if Ax
and At are the space and time steps, is satisfied

1 Az?

g M maz (D)’

(5.4)

We choose M= 5, 10 or 20, for the diffusion of single species. M =2 is the lower limit
for the convergence of the algorithm. Furthermore, close attention must be paid to the
conservation of the total amount of matter in the course of time. The conservation of
matter can be fulfilled by applying the following: i) The system is symmetrized at both
ends. ii) One introduces two imaginary cells 0 and N + 1 in which the concentrations
of the various species are equal to those of, respectively, cells 1 and N, the differential
operators (first and second derivatives with respect to x) are written accordingly at both
ends. iii) The reduced electrical field E is set equal zero in the latter two cells at each
time incrementation. iv) To consider the association between ions, we assume a local
chemical equilibrium and therefore we equilibrate the concentrations at each time step,
after having let the particles diffuse individually according to eq. (5.6). This procedure
may be used because we assume that the ion reactions are fast compared to the diffusion
of matter at a macroscopic scale [9].

The diffusion equations that we are solving are obtained from the following one di-
mensional expressions

oC; 8 B0,
5 D (% o2 ) : (5:5)
Ji = Cz (alar;’}/l — ZiE) y (56)

where E is the one-dimensional magnitude of the electrical field due to equation (3.13)
and the notation E = (e/kT)E has been used.

The parameters used to analyze the Zinc chloride on Lithium chloride are summa-
rized in Table 5.1 [31-33]. The diffusion coefficients given on table 5.1 for every zinc
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complex were obtained using the Stokes-Einstein equation, i.e., we assume an inversely
proportional relation between the diffusion coefficients and the diameter’s species.

The cummulative association constants were obtained from a previous work [34]
and using a calculating computer software: CHemical Equilibria in AQuatic Systems
(CHEAQS 4.1), see table 5.1.

Species Parameters
. o(A) D(107°cm?/s) p(adim.)
Lit 4.3 10.29 -
Cl~ 3.6 20.32 -
Tracer 7.0 7.01 -
Dimer 6.8 .22 0.49
Trimer 6.8 Fi0 0.62
Tetramer 7.0 Tl 0.51
Pentamer 7.0 7.01 0.20

Table 5.1: Specie’s parameters for ZnCly on LiCl. Where o’s are the diameters, D’s the
Diffusion Coefficients and ’s the cummulative association constants.

The experimental results were obtained specifically for this work using the closed
capillary technique [35]. A bore of 1-mm diameter was drilled through the center of the
cylinder. The bottom section, of length L = 1.29 cm, is made from scintillating plastic
(Altustipe), whereas the top section is made of ordinary plastic of the same length L.
The total length of the capillary is then 2L = 2.58 cm, corresponding to characteristic
diffusion times in the system of about 2 or 3 days. The aqueous solutions are spiked with
tracer amounts of %(Zn)Cl radioactive aqueous solutions from the Radiochemical Centre,
Amersham (U.K.).

The NM analysis for the particular case of pentamer formation is obtained from egs.
(4.19) and (4.24) only by taking the value N=5 on the delta parameters given by (4.20).

As expected, the finite difference non-ideal associated (NI-A) curve is the better
approximation to the experimental results according to Figure 5.2, i.e., the complete dif-
fusion equation who takes into account non-ideality and association phenomena. On the
other hand, the ideal non-associated (I-NA) finite differences curve is clearly the approach
more remote, so far, of the experimental results (see Figure 5.2), which means that both
effects, non-ideality and association are importants. Moreover, according to Figure 5.3,
the normal mode curves, we can see that the NI-A case is again a better approximation
to experimental results. This shows that the NM approximation captures reasonably well
the non-ideality and association phenomena. Nevertheless, compared with the full theory
it seems that non-linear terms are necessary to have a better approximation. However
the more remote approach to the experimental results is the non-ideal non-associated
(NI-NA) case and the posible reason will be discussed below. Comparing the figures 5.2
and 5.3, we can see that the curves for the NI-NA and the I-NA cases are exchanged
because in normal modes curves the minimum for the NI-NA case is greater than the
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[-NA case, meanwhile in the full theory curves, the I-NA case is greater than the NI-NA
case. This could happen due to the coupling between association and ideality in the
normal modes expressions, i.e., if we turn off the association, taking all the cummula-
tive association constants equal to zero, this implies necessarily to turn off non-ideality
parameters (see egqs. (3.72)). On the contrary, in the case of the non-linear theory, the
non-ideality and the association are not inextricably coupled, so that when we turn off
the association, not necessarily it turns off non ideality, as we can see in eqgs. (3.72) for
the Als parameter where association terms are coupled with non—ideality terms. Further-
more, the ideal associated (I-A) curves for finite differences and NM approximations have
similar behaviours and are located above the experimental result curves in both cases.
This could be telling that if we turn off non—ideality it doesn’t necessarily means to turn
off association, but we need to note that in the NM curve such a behaviour is decreased
because it is farther from the experimental results. This is an expected result because of
the linearization of the NM approximation.

We can see that the association phenomena is relevant for the description of our
tracer diffusion process: the more we have specie’s formation, the more we improve our
diffusion results, i.e., to consider association formation until pentamers give us a more
closer relation between the theory and experimental results.

The relevance of considering the specie’s formation in our theory is very important
because the fewer species consider, the further away the theoretical from the experimental
results. Which meant that zinc complexe’s formation proposed here is in agreement with
that encountered in literature.

There is sensitivity to the size of the complexes, fundamentally in the ~;’s calculus,
i.e., theres is sensitivity to the non-ideality description. In counterpart to vary the
diffusion coefficients we have no a considerable activity variation, neither when we vary
the association constants £;’s. The minima position is almost insensible to the order of
the complex, however, curves gradually closer to the experimental results as the order of
the complexes increases.

The theoretical development seems to inherit the sensitive diameter’s dependence from
the MSA theory via the activity coefficients. In counterpart the theoretical theory does
not shows a perceptive sensitivity with respect to the discusion coefficients and neither
if we vary the association constants [3;’s. However, the species order complex shows that
the curves gradually approach to the experimental results as the order of the complexes
increases.
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Figure 5.2: Finite Differences Curves. From top to bottom: curve including associanting
effects but not an ideal solution, curve including non-associating effects and not an ideal
solution, curve including non-associating effects but not an ideal solution, curve including
non-associating effects and an ideal solution. The broken line is for the experimental

results.
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Figure 5.3: Normal Mode Curves. From top to bottom: curve including associanting
effects but not an ideal solution, curve including non-associating effects and not an ideal
solution, curve including non-associating effects but not an ideal solution, curve including
non-associating effects and an ideal solution. The broken line is for the experimental

results.
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Figure 5.4: Here is shown the association relevance. Notice that the more we consider
association closer we get to the complete NM theory.
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Figure 5.5: Modification NM curves considering an increase and a decrement of the diff-

slower the tracer’s diffusion process.

suion coefficient specie’s values and its comparison with the complete NM approximation
were modified. As expected, it can be seen that the smaller the diffusion coefficients the

are shown. In those curves all specie’s values at the same time and in the same proportion
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Figure 5.6: NM curves obtained by modifying the specie’s size and itsvcomparison with
the complete NM theory are shown. We can see that there is a considerable sensitivity
of the NM theory with respect to the size of the species.
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comparison with the NM complete theory are shown. It seems that there isn’t significant

difference between the curves.

o7



08



Lo bt N A S A R B RN 559 A U ASABE |

CHAPTER 6
CONCLUSIONS AND PERSPECTIVES

A difusion coupling theory for non-ideal aqueous electrolytes that considers association
to arbitrary order with a two electrolyte mixture sharing the same anion with arbitrary
valences was developed. The theoretical formalism was obtained considering that the salt
MA is in much larger amount (major electrolyte) than XA in order to have an internal
electrical field “completely” due to the salt acting over all species. As a case of study we
consider an electrolyte aqueous solution made of ZnCl, at 0.02 M diluted on LiCl at 1 M
(major electrolyte) where we are considering up to pentamers complexes, i.e., Zn**" ions
can bind up to four Cl~ ions.

Experimental results are in good agreement with our theoretical treatment. The pres-
ence of association and non-ideality in our system plays a crucial role in the description of
the electrolyte solution’s diffusion. The more accurate curves to the experimental results
on both figures are those including association and non-ideality effects.

Moreover, even when we can use the activity coefficient analitycal expressions consid-
ering association up to pentamers given by the BiMSA [28] theory, that does not seem to
be necessary because the expressions used are in good agreement with the reproduction
of the non-ideality behavior until the concentrations used. Further work is needed in this
direction.

The total tracer diffusion equation obtained using IT-NM approximation combination
is a first order theory from those obtained with the IT itself. This could be relevant
because in principle, we can develope a non-trivial second order approximation equation
in order to have an improvement on the tracer’s diffusion process description. In that
sense we should have a more accurate NM curves to experimental results.

According to the theoretical development we see that there is a close relationship
or coupling between association and non-ideality phenomena. This could be seen on
the A’s parameters where the association constants and the activity coefficients appears
naturally related, such that if we turn off the association (when the constants 3's are zero)
the non-ideal parameters are gone and at the contrary, if we turn off the non—idealization
we don’t necessarily lost the association phenomenom, because some association constant
survives.

The theoretical development seems to inherit the sensitive diameter’s dependence from
the MSA theory via the activity coefficients. In counterpart the theoretical theory does
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not shows a perceptive sensitivity with respect to the diffusion coefficients and neither if
we vary the association constants f;’s. However, the species order complex shows that
the curves gradually approach to the experimental results as the order of the complexes
increases.

Similarly, we can use as a closure relation the poisson equation to calculate the elec-
trical field instead of the dynamical electrolneutrality condition, having a stronger theo-
retical analysis in order to obtain a better approximation of the diffusion process.

As we mention above, we can use the activity coefficient analitycal expressions con-
sidering association up to pentamers given by the BIMSA [28] theory, where the activity
coefficients depends explicitly, via the BIMSA coefficients, on the density of the com-
plexes to give us a more accuracy on the non-ideal parameters. In addition to this we
could consider different concentration regimes of our case of study (ZnCl, on LiCl), e.g.,
higher solute concentrations.

We could obtain a generalization of our case of study considering a three dimensional
cylindrical system, generalizing the expressions for the activity, the normal modes and
the finite differences; in order to obtain a three dimensional diffusion process to simulate
a more realistic system.
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APPENDIX A

FINITE DIFFERENCES
APPROXIMATION

A.0.1 Von Neumann Stability analysis

The preceding stability analysis uses the eigenvalues of the matrix obtained from a semi-
discretization of the partial differential equation at hand. Different spatial differencing
schemes lead to different stability criteria for a given time advancement scheme. We shall
refer to this type of analysis as the matriz stability analysis. Since boundary conditions
are implemented in the semi-discretization, their effects are accounted for in the matriz
stability analysis. The price paid for this generality is the need to know the eigenval-
ues of the matrix that arises from the spatial discretization. Unfotunately, analytacal
expressions for the eigenvalues are ony available for very simple matrices, and therefore,
the matrix stability analysis is not widely used. Experience has shown that in ost cases,
numerical stability problems arise solely from the (full) discretization of the partial differ-
ential equation inside the domain and not from the boundary conditions. von Neumann’s
stability analysis is a widely used (back of an envelope) analytical procedure for deter-
mining the stability properties of a numerical method applied to a PDE that does not
account for the effects of boundary conditions. In fact, it is assumed that the bound-
ary conditions are periodic; that is, the solution and its derivatives are the same at the
two ends of the domain. The technique works for linear, constant coefficient differential
equations that are discretized on uniformly spaced apatial grids. Let’s demonstrate von
Neumann’s technique by applying it to the discrete equation

n+1 n alt n n) n
o™ =+ g (it — 2 o). (A1)

Equation (A.1) results from approximating the spatial derivative in (5.5) with the
second-order central difference and using the explicit Euler for time advancement. The
key part of von Neumann’s analysis to assume a solution of the form

ul™ = greikei A2
j
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for the discrete equation (A.1). Note that the assumption of spatial periodicity is
already worked into the form of the solution in (A.2); the period is 27/k. To check
whether this solution works, we substitute (A.2) into (A.1) and obtain

s ¢ 7AY / o o .
o,n+lezkz] = o_nezka g = zo_n(ezkxjﬂ B 2611::1] + ezkzj_l)
x

Noting that
Tj1 = T; + Az and Ty =@y — Az (A.3)
and dividing both sides by o™e™*%; leads to

aAt ik Ax —ikAz
0:1+A—xz(elkA —2+e kA)

and using the complex trigonometric identity sin®(z) = —i[ez"z + €72 — 2] o becomes

I 4aAtSm2 (kAx)

Ax? 2
Now, defining the amplification factor

u(l+1
G=-2

n
]

The necessary and sufficient condition for the error to remain bounded is that |G|< 1.
However

ks o
G=———=0

O—neikzj

then we have |o|< 1 (otherwise, 6™ in (A.2) would grow unbounded):

daAt ., (kAzx
— 1 — ) < i
1 Agz S < 5 > <1 (A.4)
In other words, we must have
4aAl kAzx
-1<1- in? < :
<1 Agz S ( . > =1 (A.5)

The right hand inequality is always satisfied since [225Lsin? (

The left-hand inequality can be recast as

—4aAtsin2 (kAx) > 9

ICAQ? . nj e,
T) is always positive.

At 2 2
or
At kEA: :
42:52 sin® ( §Z> <2 (A.0)

For the above condition to hold at all sin?(kAz/2), we have
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2
e (A7)

2a

In summary, the von Neumann analysis is an analytical technique that is applied to
the full (space-time) discretization of a partial differential equation. The technique works
whenever the space-dependent terms are eliminated after substituting the periodic form
of the solution given in (A.2). For example, if in (5.5), o were a known function of x, then
the von Neumann analyisis would not, in general, work. In this case ¢ would have to be
a function of x and the simple solution given in (A.2) would no longer valid. The same
problem would arise if a non-uniformly spaced spatial grid were used. Of course, in these
cases the matrix stability analysis would still work, but (for variable « or on -uniform
meshes) the eigenvalues would not be available via an analytical formula, moreover, one
would have to restort to well-known numerical techniques to estimate the eigenvalue with
the highest magnitude for a given N. However, in case such an estimate is not available,
experience has shown us that using the maximum value of «a(z) and/or the smallest Ax
in (5.13) gives an adequate estimate for At,,,,.
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The diffusion equations that we are solving are obtained from the next one dimensional

expressions
8J; 0°C;
0,C; = D; (a + W‘) (AS)
B dln; =
Ji = CZ < 8.7,‘ = ZiE> (Ag)

where E = (e/kT)E, with k is the boltzmann constant, T is the temperature and E

is the electric field.
and could be written as

AtD;
(Az)?

Note that if we apply the Von Neumann stability analysis to this relation, the neces-
sary and sufficient condition to the stability requirement for this Forward-Time Central-
Space (FTCS) scheme is

D;At
(

(Ciy+1 — 2035 + CF41) + —— (I — Ji-1) (A.10)
Azx

n+l __ n
Gy =Ci+

A 10T (A.11)
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APPENDIX B

ALGORITHMS USED

“+

There were various algorithms used on this work. The representative ones can be obtained
from the next website:
https://dl.dropboxusercontent.com,/u/49520808/DF _Zn_no_ Ideal _asociativo.f
and
https://dl.dropboxusercontent.com/u/49520808/MN _Zn_ noideal _asoc_ le-2.f
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ideales” desarrollada por el M. en F. José Miguel Ramos Moreno y dirigida por el Dr.
José Torres Arenas y co-dirigida por el Dr. Jean Pierre Simonin.

La tesis esta bien escrita y es auto-contenida. Esto favorece su facil lectura y la
comprension de la misma. El principal resultado de la tesis doctoral del M. en F. Ramos
es el desarrollo de un formalismo tedrico que permite obtener la evolucion temporal de
la concentracion de electrolitos. Este resultado, sin lugar a dudas, original es de suma
importancia para entender, desde primeros principios, los procesos de transporte en
soluciones electroliticas.

Por dicho en el parrafo anterior, considero que la tesis reune, y por mucho, los
requisitos de calidad para ser defendida por el M. en F. Ramos, por lo que doy mi
anuencia para formar parte del jurado de esta tesis, la cual puede defenderse en la
fecha que sea mas conveniente.

Atentamente,
“La Verdad Os Hara Libres”

Dr. Ramén Castaneda Priego
Profesor Titular C
Departamento de Ingenieria Fisica

DIVISION DE CIENCIAS E INGENIERIAS, CAMPUS LEON



Ledn, Gto., a 16 de Mayo 2016
Dr. Susana Figueroa Gerstenmaier
Directora de la Divisién de Ciencias e Ingenierias,
Campus Ledn, Universidad de Guanajuato
PRESENTE
Por este medio, Comunico que he leido y revisado la tesis titulada “Diffusion Coupling in
Associating non-ideal Multi-Electrolyte Solutions” que presenta el M.F. José Miguel Ramos
Moreno, en esta Divisién, para obtener el grado de Doctor en ciencias (Fisica). Considero que

el trabajo cumple con todos los requisitos de calidad que se exige para obtener el grado

mencionado. Por lo anterior, acepto en contenido, forma, y profundidad la mencionada tesis.

Atentamente,
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Dr. David Delepine
Profesor Titular B

Departamento de Fisica, Campus Le6n
Universidad de Guanajuato

DEPARTAMENTO DE FiSICA, CAMPUS LEON

Lama del Bosque 103, Fracc. Lomas del Campestre C.P. 37150 Ledn, Gto., Ap. Postal E-143 C.P. 37000 Tel. (477) 788-5100 Fax: (477) 788-5100 ext. 8410, http://www.fisica.ugto.mx



